
SECURrI.T CLASSIFICATV)N OF THIS PAGE (%%oen Data Entered)

REOTDOCUMENTATION PAGE VIONORM
REP~fTNUMB. GOVT ACCESSION NO. 3. cc

Ij HPP80-23

I Technical r-p1,,
P NOR ORG. R iPOR-f NUIER

Details of RLL-1._____________
7. 8. CONTRACT OR GRANT NUUSER(a)

9. PE R FORMIN Oa0RG0AN I ZATION N AM E AN -AVORESS-:L01 A0RKUNIt OWE%

Stanford University

11,I CONTROLLING OFFICE NAME AND ADDRESSIL

office of Naval Research, 800 No. Quincy 'T.-NUMBER OF PAGES

Street, Arlington, Va. 22217 6

16. DISTRIBUTION STATEMENT (of this Report)

AIMTRMTON STATEM4ENT A

Approved for public releaae;I Distribution Unlimited

17. DISTRIBUTION STATEMENT (of tha abstract evil .. d in Block 20, It dIiferent from Report)

Reports Distribution List, July 31, 1980
1S, SUPPLEMENTARY NOTES

4S. K(EY WORDS (Continue an ro~erso side iI nece.B*W and Identify by block num be,)

Representation, Knowledge, Language, Self-Description, Self-
Modification, Expert Systems.

20. ABSTRACT (Continuo on favors* aide it nec~sesvy anid Identify by block numb.,)i rSEL ECTE
MAR 25 1981

I,
D A

DDJAN73 1473 EDI TION OF 1NOV 65 IS OSSOLETV ,ItL I~~ * T~~D JD 7 SIN 0102.LF.014-6601 ./' '-

SECURITY CLASSIFICATION OF THIS PAGE (enData ffntavad

812 8001J

Stanford Heurtistic Programming Project October 1980
HPP-80-23 (W~orking Paper)

Details of RLL-1
by

Russell Greiner and Douglas B. Lenat
Computer Science Deptartrnent

Stanford University

Supplement to
"RLL-1:

A Representation Language Language"

Accesion 70? Heuristic Programming Project
GR~iA&z Computer Science Department

DTIC TAB ElStanford University

Unannounced 0l Stanford, California 94305

By DTIC
Distributionl/ ~ELECTE
AvailabilItY C00 MIAR 25 1981

st pecialU

D
S DISTRIBUTION STATEME A

Approved for publiC Te~eo*"0

1Distribution- Unlimtited

Details Of RLL1
This paper includes many implementation level details about tl~e RLL-1 system, described in a
companion paper. 4RLL-1: A Representation Language LanguageT (Heuristic Programming Project

Working Paper HPP-80-9, October 1980. at Stanford University. by RuI.Sell Greiner).

Table of Contents -

E. Specia Units. -..

E.P~aning~nvenron,..........&....

E.2Ategend -- f- . E..1E
.....................................

E.3-"'Actual Units -2

E-47'Inciex of'Uits. ~ E.23

F-'EnvironmenL....2-. F.1
F.1-'Top Level f'unctions., ~......1

F.25Functions needed to ootstrap RLL-1, F.3
F.3"4Convenience FunctionsF.9

FA4 Advised Functions ~ F.11

F.510CiobaI Variables.. F

G. Sample Session G.1

Any~btacti g&nst n oceehigU

AnyPafltalsoec AnyCharacteristic7S ~Anyinheritance A

AnylnlenaaonalCbiect AnyUaer AnyClass AnyFormat Any~atatype
AnyOverhead AnyProces

Anyart~l.AnySlotFormat AnyValueforniat
AnyUnitFarSlct

AnyUnitistProcewq AnyFunction

AnyUnitProcesa AnyUnutLiatFn AnyFunctional

AnyStorableFri AriySttUs~n

AnyUnitFn AnySlotCambiner

AnySlot

AnyField -- / AnySSELFSSIot
AnyComputable~iot AflyPdmnitiveSlot

AnyinheritableSiot

Diagram # 1

Classes of Units

AppendiE- -..... U -

Appendix E: Special Units 5-I

Appendix E: Special Units

Many RLL-1 units are directly used by one or more of the RLL-1 functions listed
below. These special ones are enumerated below, following a depth first traversal of the
RLL-1 Knowledge Base. Diagram #1 portrays a skeleton of this hierarchy, showing the
subset relations joining these various classes.

E.1: Naming Conventions.

Any** - refers to the class of all * objects [e.g. AnySlot refers to slots]
Typical*** - refers to the abstract object which typifies members of Any"'o
F" * ' - refers to a format [e.g. FSingletool
I*** - refers to inheritance type le.g. IExamplesl
My*** -is a syntactic slot, [e.g. MyCreatorl
*'-Instances - holds value of syntactic slot, My**', to be inherited.

- This **-Instances slot appears in Typical- units
AlII's - refers to extension of *** slot le.g. All/sas extends Isa)
***Type - refers to a datatype, [e.g. IntegerTypej
FnFor** - the value of this slot is a function, [e.g. ForForGettng
To*** - the value of this slot is a function,...
"**Value - the value of this slot refers to slot (as opposed to a field)
"'Field - the value of this slot refers to field (currently not used)

E.2: Legend.

This RLL-1 Knowledge Base is organised into classes, which each contain a set of
elements. Associated with each such class of units is a list of slots, which are meaningful
for elements of this class. For example, the Datatype slot makes sense for any function;
but is meaningless for, say, people.

Each entry is Section E.3 will describe a class of units; including relevant features
of the members of this class, and the list of slots defined for each member. The format
used will be:

Chu.±.{arnt (J) A short description of what the class Class Name represents.
SuperClass: {Important immediate supersets of this class)
SubClass: (Important immediate subsets of this class)

There are currently n examples.

fi

E-2 Appendix E: Special Units

Direct Examples: (Important examples of this class)
The following slots are defined for all "members of Class Name "s:

*lot, - islotl's range) A short description of slots.
Inverse: slotz's inverse
HLDefn: slots's high level definition
ArgList: a 1, arg2, ... agsu

slotiv - [slotN's rangej A short description of slotH.
Inverse: slotH's inverse
HLDefn: slotN's high level definition
ArgList: argi, arga, ... argMN

We view a slot as a function, which maps a unit onto some value. The "sloti's
range" field above encodes the space of permissible values the slot4 of any unit may
take. There are several basic categories of slots, each with its own type of range. When
Range is FunctionType, it is relevant to know what sloti's HighLevelDefinition, and
ArgList is - otherwise these slots are not even well defined. Similarly, unless Range is
UnitType, it is not possible for Slots to have an inverse.

Subsection E.4 will provide an index to the units presented in Section E.3, using
the sequential numbers assigned to each class. Each class will refer to that number, and
each slot will point to the number associated with the class to which is afliated.

E.3: Actual Units.

Anything (1) - The topmost node, in all the hierarchies.
SubClass: AnyAT&U AnyAbstractThing AnyCT&U AnyConcreteThing AnyFocus

AnyUnit
Direct Examples: AnyClassOfObjects

The following slots are defined for all "thing "s:
lea - fFSet (UnitType (*P AnyClassOfObjects))] This primitive slot is the fundamental

hierarchical link in this system, specifying those classes to which this unit belongs.
Note that its format is SET - hence this system can handle a DAG structure; better
for our purposes than a tree.

Inverse: UnitExamples

Characteris lce - IFSet NonNILType This list& some essential characteristics of this
unit. (Not currently in use.)

___ r

Appendix E: Special Units H-3

HighLevelDefn: (Unioning FunctionCharacter FormatCharacter)

Deacr - [FSingleton NonNILTypel This describes this unit. (It is used to generate this
document.)

AllUsa* - JFSet UnitType) This specifies each class to which this unit belongs. (It includes
each SuperClass of this unit's I slot.)

Inverse: AllExamples
HighLevelDefn: (Composition SuperClass* Isa)

AUiGenla - IFSet UnitTypel This points to a list of those units which are somehow more
general than this unit.

Inverse: AliSpecs
HighLevelDefn: (Unioning Prototypes (OneOf SuperClass* SuperTypEx* SuperSlot*

GenlAct*))

Allqpecs - IFSet UnitTypej This lists every unit which is somehow more precise than
this unit.

Inverse: AllGenls
HighLevelDefn: (Unioning AllTypicaJExampleOts (OneOf SubClass* SubTypEx* SubSlot*

SpecAct*))

.Prototypes - IFSet (UnitType (*P AnyArchetype)) This points to each typical example
of this unit, not necessarily in order of increasing generality.

Inverse: AllTypicalExampleOfs
HighLevelDefn: (Composition TypicalExample Allsas)

Specializations - (FSet UnitType This points to each unit which "specialises' this unit.
Inverse: Generalizations
HighLevelDefn: (OneOf SubSot SpeiAc. SubTypEx SubDT SubClass)

OrderedPrototype. - IFOrderedSet UnitType) Enumerates the prototypes of this unit in
order of increasing generality (i.e. TypicalDog would precede TypicalAnimal .)

HighLevelDetn: (PutinOrder Prototypes SuperTypEx' NIL MembForOrdPro)

AnyAT&U (2) -This is a HACK - to deal with the units in this system, which represent
both some abstract object (NOT in the world,) and themselves...

SuperClass: Anything
SubClass: AnylntensionalObject AnyPartialSpec

The *lots appropriate for all "AT6T"s are those defined for each of: (AnyUnit AnyAbstractThing).

AnylntensionalObject (8) -Descendants of this unit describe some entity in the world
intensionally - as opposed to directly referring to in.

SuperClass: AnyAT&U AnyCT&U
SubClass: AnyArchetype AnyDescriptor AnyUnitForSlot AnyVariable

I, _..

E-4 Appendix E: Special Units

AnyArchetype (4) - Every typical example of some class is an archetype, and descends
from this unit.

SuperClass: AnylntensionalObject
There are currently 123 examples.

The following slogs are defined for all "Archetype "s:

NetvPossibleSlots - fFSet SlotTypej This lists the names of slots which are meaningful
for every instance" of this typical example. Furthermore, this is the highest place
where this slot is meaningful (hence the *newness' of the name.)

Inverse: MakesSenseFor
HighLevelDefn: (Composition (Soiten NewP ossibleSlots) MyComposcO f)

TzjpicaiEzamnpleOf - [FSingleton (UnitType (*P AnyClassOfObjects))] Refers back,
from the typical example unit, to the class of elements it typifies.

Inverse: TypicalExample

SuperTygpEz - [FSet UnitTypej This denotes the relation connecting Typicailog to
TypicalAnimal - i.e. a superset relation holds between the elements each (respectively)
typifies.

Inverse: SubTypEx
NightevelDefn: (Composition TypicalExample SuperClass TypicalExample~f)

SubTypE: - JFSet UnitType] See SuperTtypEz.
Inverse: SuperTypEx
HighLevelDefn: (Composition Typical.Example SubClass TypicalExamplcO f)

PossibleSlots - [FSet UnitTypel This is obsolete - and will soon be deleted.
HighLevelDefn: (Composition NewPossibleSlots, SuperTypEx*)

SuperTypEz* - FSet UnitType] This is the transitive closure of Supei'7%,pEz.
Inverse: SubTypEx*
HightevelDefn: (Composition TypicalExample SuperClass* TypicalExample~f)

SubTypE:'* - [FSet (UnitType ('P AnyArchetype))] This is the transitive closure of
SubTYPE: .

Inverse: SuperTypEx*

HighLevelDefn: (Composition TypicalExample SubClass' TypicalExample~f)

AnyDescriptor (5). -This will eventu ally hold descriptors - a whole class of entities which
will have to be defined...

SuperClass: Anylntension alO bj'ect

Appendix E: Special UnitsE.

AnyUnitForSlot (6) - At times, there is more than just one 'morsel' of information
needed to describe the value of some unit's slot. RLL then devotes an entire unit to
hold this information. Such units descend from this AnyUnitForSlat,

SuperClass: AnylntensionalObject
The following slots are defined for all "LlnitForSlot "s:

vaLue - [FSingleton NonNlLTypel When a unit is allocated to store facts about the
value of a slot, the actual value of that slot, if any, is kept in the *uaLue* slot of
that sub unit.

IHighLevelDefn: (Application (Composition Defn LiveslnSlot) LiveslnUnit)

AnyVariable ('7) - This class contains the universally or existentially bound variables.
Note tha this is a META description of said units.

SuperClass: Any~ntensionalObject

AnyPartialSpec (8) - This class includes objects which are only partial specified. This
is essential to deal with MOLGEN UNITs package notion of SPEC inheritance - in
which some object is specified more and more completely.

SuperClass:. AnyAT&U
SubClass: AnyGenericEvent

The following slots are defined for all "PartialSpec "s:

MyRefineSlots - [FSet SlotTypel The value of U:MyRefineStots is a list of those slots
on the unit U which are used to specify facts which are not definitional.

AnyAbstractTbing (9) - Instances refer to intangible objects; as opposed to concrete
things (such as real world people or units) .

SuperClass: Anything

AnyCT&U (10) - This is a HACK - to deal with the units in this system, which represent
both some object in the world, and themselves...

SuperClass: Anything
SubClass: AnyCharacteristic AnyClassOfObjects AnyDecompos able Object AnyEvent

AnyInheritance AnylntensionalObject AnyOverhead AnyProcess AnyUnit
AnyUser

The slots appropriate for all "C'TU"s are those defined for each of: (AnyUnit AnyConceteThing)

AnyCharacteristic (11) - This fathers units which describe characteristics of some entity
-as opposed to something which actually exists in and of itself.

SuperClass: AnyCT&U
SubClass: AnyDatatype AnyFormat

E-6 Appendix E: Special Units

AnuyDatatype (12) - Every datatype (used for building up type specifications,)descends
from this.

SuperClass: AnyCharacteristic
Direct Examples: KBType NonNlLType NumberType BooleanType UnrestrictedType

FunctionType SlotType IntegerType UnitType StringType
Th&e following sloets are defined for all "Datatype "s:

EqualDTpec - (FSet (FListN (UnitType (*P AnyDatatype)) UnrestrictedType)I This
helps relate one datatype to another - by defining a set of equivalent datatype-
datarange pairs.

Verifynype - IFSingleton F'unctionTypel DT: VerifyType is a predicate, returning nonNYL
for all elements which qualify in this datatype.

General eAll - [FSingleton FunctionTypej DT:GenerateAll returns a lisit of all members
of the datatype, DT .

SuperDT- [FSet (UnitType (*P AnyDatatype))] This points to the list of more general
datatypes - i.e. those which contain a superset of this datatype's members.

Inverse: SubDT
StubDT - [FSet (UnitType (*P AnyDatatype))] DT:SubDt points to Datatypes which

accept a subset of those accepts by the datatype DT.
Inverse: SuperDT

Ran gelnterpreter - [FSingleton FunctionTypel DT:Rarigernterpreter is a function which
helps parse the value of S :D ataRasge , which is used to determine the appropriate
yalues to fill U:S.

ZaTypeOf- fFSet SlotTypej Points from a datatype to those units representing functions
whose range is Composed of this datatype.

Inverse: Datatype

SuperDT*- JFSet UnitTypej A list of a unit's SuperDT, THIR~ SuperDT, etc.
Inverse: SubDT*
H-ighLevelDefn: (Starring S uperDT)

SubDT* - JFSet (UnitType (*JP AnyDatatype))] Transitive closure of SubDT.
Inverse: SuperDT*
HighLevelDefn: (Starring SubDT)

AnyFormat (13) -From this descends the units which each serve to describe some
format; which can be used in a type description.

SuperClass: AnyCharacteristic
SubClass: AnySlotForrnat AnyValueFormat

The following slots are defined for all "Format "a:

Appendix E: Special Units E-7

FnForAdding - [FSingleton FunctionTypel One should add a new entry to a Ordered
LIST in a different manner than one uses to add a value to an Unordered SET.
(In the first case, multiple occurances of an element are acceptable; which is NOT
true in the second case.) This information is contained in the function stored in
F:FnForAdding. Note it is used by the various Add ing functions - such as the one
employed to add a new entry to the existing value of a unit's slot.

FhForDeleting - [FSingleton FunctionTypel There are different ways of deleting an
element from a list, versus from a set. As with FnForAdding , this information is
stored in F:FnForD eleting, where F is the name of a format.

FormatCharacter - [FSet NonNILTypel This holds a list of specifications for some
format. It is not currently used for anything but show.

F'nForGetting - [FSingleton FunctionType] This is used to determine the value of a
special slot value, to be returned when GetValue requests its value.

FnForPutting - [FSingleton FunctionType) This indicates how to put a value. It is
basically used for indirect pointers.

FhForKilling - [FSingleton FunctionTypel To handle indirect pointers using the *Do*
special slot values, one needs assistance to describe how to perform various manipula-
tions - such as deleting a full slot's value. This information is kept in VF:FhForKilling
, where VF is a value format.

FnForVerifyingAll - [FSingleton FunctionType) This is used, in conjunction with the
various verifying functions associated with each datatype, to build the function stored
in the VerifyValue slot of each slot. It indicates how to verify that a full entry
is correct, given, (among other arguments,) the predicate to apply to each entry
individually.

FnForVerifyingElement - jFSingleton FunctionType This is used to verify that a single
element is correct. (Perhaps this isn't used anymore - I must look into this.)

AnySlotFormat (14) - Descendants are used in type specifications, for processes (which
include functions and slots).

SuperClass: AnyFormat
Direct Examples: FSingleton FList FSet FOrderedSet FBag FListN

AnyValueFormat (15) - Descendants are used in a *Do* special slot value format. This
has applications as indirect pointers, as well as to put epistemological marks on some
value.

SuperClass: AnyFormat
SubClass: AnylndirectPtrFormat
Direct Examples: FOneOf FExecute

Il

E-8 Appendix E: Special Units

AnylndirectPtrFormat (16) - These are used to deal with subunits, and other places
where much data is stored at another location - other than U:S.

SuperClass: AnyValueFormat
Direct Examples: FSeeUnit FSeeSlot FSeeU&S

AnyClassOrObjects (17) - Every member of this class is itself a set.
SuperClass: AnyCT&U

There are currently 4T examples.
The following ilots are defined for all "ClassOfObjects"s:

TypicalEz ample - JFSingleton (UnitType (*P AnyArchetype))] This points from a class
to an abstract entity which holds default information about members of this class.

Inverse: TypicalExampleOf

DomnainOf - [FSet (UnitType (*P AnyFunctlion))J If a function takes one or more
elements of this class, as arguments, that function is stored on the DomnainOf slot
of the unit representing that class.

Inverse: Domain
,RangeOf - JFSet (UnitType ('P AnyFunction))J If a function maps into this class (or a

space having this class as one dimension,) that function is stored on the RangeOf
slot of the unit representing that class.

Inverse: Range

Inten sion4lEz ample* - JFSet UnitTypej These examples are all intentional objects -
that is, they are only defined intentionally.

StdExamples - fFSet UnitTypel This slot basically represents the vanilla "E' relation-
ship, between an extensional object, and a represented set.

SuperClais - IFSet (UnitType (*P AnyClassOrObjects))I This points from a class, C, to
each superset of C, Di . That is, x EC => x EDj , for all elements x, and all sets,
Di .

Inverse: SubClass

SubClass - jFSet UnitTypel This points fromn a class, C, to each subset of C.
Inverse: SuperClass

UnitExam pee. - [FSet UnitType] This points from a class to each member of that cl&4s,
(Both constant and variable.)

Inverse: Isa
H4ighLevyelDefn: (Unioning IntensionalExamples St4Examples)

TotalSoFar - IFSingleton IntegerType] Fill in later.
SuperClass * FSet UnitTypel A list of a unit's SuperClass, THEIR SuperClass, etc.

Appendix E: Special UnitsE9

Inverse: SubClass*
HighLevelDefn: (Starring SuperClass)

StsbClass * FSet UnitTypel A list of a unit's SubClass, THEIR SubClass, etc.
Inverse: SuperCiass*
HighLevelDefn: (Starring SubClass)

All.Examples - JFSet UnitType] This points from a class to a list of members of this
class. (UnitExamples only pointed to elements immediately a member of some set
- this will follow their SuperCi4Au links as well, to more accurately represent an
"E' relation.)

Inverse: AllIsas
H-ighLevelDefn: (Composition UnitExamples SubClass*)

Genie Models - [FSet (UnitType (*P AnyArchetype))l This is used for several of the
inheritances. The prototypes of every example of some class include that class's
Genie Models.

HighLevelDefn: (Composition TypicalExample SuperClass*)

AnyDetompasableObject (18) - Descendants of this are real world entities which consist
of several subparts; and which are little more than the union of such pieces.

SuperClass: AnyCT&U
SubClass: A nyAction Sequence

The f ollowing slots are defined for all "DecomposableObject a

Cornposed~f - JFSet NonNILTypej This points to a list of the parts associated with
this entity.

AnyActionSequence (19).- Any compound action, composed a sequence of subactions,
descends from this unit.

SuperClass: AnyAction AnyDecornposableObject
The following slots are defined for all "ActionSequence "a:

SubActions - [FList NonNiLTypej Each action may be broken into a series of substeps
-each of which is a "subaction".

AnyInheritance (20) - All modes of inheritance will descend from here. Associated with
each instance of an inheritance is a means for creating new units, and constraints on
properties these units may acquire. (and maybe other things...)

SuperClass: AnyCT&U
Direct Examples: lExamples IS ubClass ITypEx

The following slots are defined for all "Inheritance "a:

B-10 Appendix E: Special Units

UseToGetSlotj - FSingleton NonNILTypej This points to a high level definition of
a function which is takes the parent units, and returns a list of units whose NewPossibleSlots
slot together hold the slot& which should be initialized in this new offspring.

GetPossibleSlotF1s - [FSingleton SlotTypel This points a unit which represents a func-
tion, which takes the units found using the U. eTaGetSloL a function mentioned
above, and returns a list of values with which to initialize a new unit. Each entry
in this ordered list is a triple, consisting of the name of the slot, followed by the
location of the relevant initializing function, and the typical example in which this
slot was found.

Inverse: UsedByInheritance

AnyOverhead (21) - Miscellaneous information needed by CORLL, etc., is stored on
units which descend from here.

SuperClass: AnyCT&U
SubClass: AnyStatus

AnyStatus (22) - This will father all *.STATUJS units
SuperClass: AnyOverhead

Direct Examples: RLL.STATUS
The folowing s lots are defined for all 'S tatus "s:

KB, VA R S - JFSingleton NonNM~aypel This names a variable, whose value lists the
variables associated with this Knowledge Base.

KBaConnectedTo- FSeL (UnitType (*P AnyStatus))J The value of < kb>.-STATUS:KBs Connect edT
is a list of other status units, which were resident in core the last time this Knowledge
Base, <kb>, was used. It is reset whenever a new Knowledge Base is read in, or
whenever one is disconnected or reconnected.

Inverse: KBsConnectedTo

OpenDate - lFSingleton SttirigTypel This holds the time stamp when this Knowledge
Base was openned - i.e. the start of this session.

Net workStatus - IFSingieton NonNILType) This stores the last person to use this
Knowledge Base, and when that last use was,

WhenOpeningNet work - JFSingleton UnrestrictedType] This points to a list of functions
which CORLL calls when openning this K~nowledge Base. Each takes two arguments

-the first is the name of this KB, and the second is passed from WhenOpernningNetworks
serves to suppress questions and messages.

LoadFiles - [FSet NonNiLTypej This lists the files which CORLL will read in whenever
it opens this network. It will also ask if it should MAKEFILE these when this
Knowledge Base is closed.

Appendix E: Special Units E1

KBaFNS - jFSingleton NonNILTypej This points to a variable whose value lists the
functions relevant to this Knowledge Base.

When WritingNetwork - [FSingleton NonNILTypel This points to a list of functions
which CORLL calls when writing out this Knowledge Base. Each takes two argu-
ments - the first is the name of this KB, and the second is passed from When WritingNetwuorse
,serves to suppress questions and messages.

Networks - JFSet KBTypej Each Knowledge Base may depend, hierarchically, on the
presence of other knowledge bases, in core. The KBs <kb> requires are listed in
<kb>.STATUS:Networks.

KBsUnitfndez - [FSingleton NonNILTypej This points to the unit which holds the unit
index CORLL uses for this Knowledge Base.

K~eFreeBlockindez - JFSingleton NonNILTypej This points to the unit which holds
the free block index CORLL uses for this Knowledge Base.

Dependent Net works - [FSet KBTypej This lists the Knowledge Bases which rely on the
presence of this Knowledge Base to operate.

AnyProcess (23) - Every action which takes place, in LISP, is a Piecess . This cor-
responds to each function in LISP.

SuperClass: AnyCT&U
SubClass: AnyAction AnyFunction AnyUnitListProcess

The following slots are defined for all 'Process ".:
CVT~aedBy - [FSet FunctionTypel Having x in y:CVUsedBy means z s'cached-value

should be updated whenever y s cached-value changes.
Inverse: ITseCVOf

De/nUsedBy - [FSet FunctionType] Having z in y:DefnUsedBy means x s defn, and
maybe its previously stored values, should be updated whenever y s defn changes

Inverse: ITJseDefnOf

JTUaeCVOI - [NotAFormat NotARange) Having y in x:IUaeCVOf means if the y stored
value of some s should change, some x value may change as well.

Inverse: CVUsedBy
HighLevelDefn: (Apply lngFn GetAIICVs H-ighLevelDefn)

lUseDefnOf - jNotAFormat NotARangej Having y in x:IUseDefnOf means x s defn,
and maybe its previously stored values, should be updated whenever y I defn changes

Inverse: DefnUsedBy
HighLevelDefn: (Apply *ingFn GetAlIFNS HighLevel~efn)

LspFn - [FSingleton FunctionType) The actual compiled code LISP will run, to process
a process, is stored here.

E-12 Appendix E: Special Units

HighLevelDefn: (OneOf LispFnForSlot LispFnForStoredFn)

-HowToProcess - IFSingleton FunctionTypel This will soon be deleted, in favor of LispFn.
WhatToProcess - [FSet UnrestrictedTypel Fill in later.

HighLevelDefn: (OneOf TaskList RuleList)

VerifyArgs - IFSingleton FunctionTypel The value of F:Ve'ifyArgs is a function which
is true if its argument is acceptable as input to the function represented by F.

AnyAction (24) - This includes any activity carried out in the real world by physical
objects.

SuperClass: AnyProcess
SubClass: AnyActionSequence
Direct Examples: DescribeUnit

The following slots are defined for all "Action "a:
SpecAct - [FSet UnitType] This points to 'refinements" of this action - i.e. activities

which are more precisely specified.
Inverse: GenlAct

GenlAct - [FSet UnitType This points to actions which are more general (i.e. at a
higher level of abstraction) than the action encoded by this unit. E.g. Locomotions
EWalking :GertlAct .

Inverse: SpecAct

SpecAct * - [FSet UnitTypel A list of a unit's SpecAct, THEIR SpecAct, etc.
Inverse: GenlAct*
HighevelDefn: (Starring SpecAct)

GenlAct *- [FSet UnitTypel A list of a unit's GenlAct, THEIR GenlAct, etc.
Inverse: SpecAct*
HighLevelDefn: (Starring GenlAct)

AnyFunction (23) - Functions are distinquished from processes in that the primary
purpose of a function is to return a value. Note a process may be run, in effect, for
some side effect. (Yes, this is NOT pure LISP.)

SuperClass: AnyProcess
SubClass: AnyFunctional AnyPredicate AnyStorableFn AnyUnitListFn

The following slots are defined for ol 'Function"s:
SlotsUsedlnBuilding - IFSet SlotTypel Lists the slots which this one contributes to

defining.
Inverse: AIISBF

Appendix E: Special Units 01

HiglsLevelDefrs - [FSingleton NonNILTypej Here is stored a High Level Specification of
the code to be run. This can be "parsed" into a piece of LISP code, which LISP can
execute. Ideally, the information here should be sufficient to fully specify a function.

DotaRange - JFSingleton NonNILTypej The value of F:DataRange is used by the
range interpreter associated with D , the Datatype of the function S5, to generate a
function capable of deciding whether a value is acceptable or not.

Dat at ype - IFSet (UnitType (*P AnyDatatype))j S:Datatype points to the list of units
in the range of the function, F

Inverse: IsTypeOf

Format - JFSingleton (UnitType ('P AnyFormat))j This stores the format of the result
this function is expected to return.

FunctionCharacter - !FSet NonNILTypej This holds facts which serve to describe this
function. It is not currently used.

Defn - (FSingleton FunctionTypel This function must take in a slot name s and return a
function capable of read ing/com pu ting s in general. Ultimately, Defn:Deln should
have a self-compiling call placed in each value it returns.

HighLevelDefn: (Apply'ingFn CAR FunctionSpec)

Definition - [FSingleton NonNILTypej This is not currently used; and may be mean-
ingless.

Domain - [FSet (UnitType (*P AnyClastOfObjects))j This points to units, each of which
represent a class in the domain of this function.

Inverse: DomainOf
Range - (FSet (UnitType (*P AnyClatiorObjects))l This points to units, which each

represent a class in the range of this function.
Inverse: RangeOf

JaBuilt From - [NotAFormat NotARangej Appears in unit X, for a type of slot, and lists
the old things out of which X has been defined

H-ighLevelDefn: (Apply 'ingFn Al lBu tlead HighLevelDefn)

UnitsBuillFrom - INotAFormat NonNILTypej This is going away soon.
Inverse: UsedlnBuilding
I-ighLevelDefn: (Subsetting IsBuiltFrom Unitp)

UsingFunctional a - [NotAFormat NotARangej Appears as a slot in unit X, and tells
how X was defined out of other slots

Inverse: CombinerFor
HighLevelDefn: (Subsetting UsingFunctions (MemberOf Alllsas AnyFunctional))

E-14 Appendix E: Special Units

SlotsBwsilt Frorn - (NotAFormat NonNfLTypej Fill in later.
Inverse: SlotsUsedlnBuilding
HighLevelDefn: (Subsetting UnitsBuiltFrom (MemberOf Allisas AnySlot))

UsngFunction* - (NotAForrnat NotARangel Appears as a slot in unit X, and tells how
X was defined out of other slot&

HighLovelDefn: (Apply ingFn OnlyHead HighLevelDefn)

PreConditions - [FSet NonNILTypej Fill in later.

DornainType - (FList NonNlLTypej This holds a type specification indicating the dornain
over which this function is defined.

,Ran ge7rjpe - [FList NonNILTypej This holds a type specificiation, indicating the range
into which this function will nap.

AnyFunctional (26) -Each descendant unit represents a function whose range is a space
of functions.

SuperClass: AnyFunction
SubClass: AnyLogicalOp AnySlotCombiner
Direct Examples: ApplyToEach Apply'in&Fri ApplyingFn MernberOf

The following slIotsa re defined for all "Functional "a:
Get C/jsed - (FSingleton FunctionTypel The value of SC:GetCViUaed is a function

which, when applied to a high level defn, hL-fDefn, returns a list of storable functions
on whose cached values this HL-.Defn depends. (SC is the CAR of that HLDefn.)
This computed function can then be stored on the function S , which will usually be
a slot.

Get FhuUsed - IFSingleton FunctionType[The value of SC:GetFn#Used is a function
which, when applied to a high]eye] detn, HLIefn, returns a list of functions on
whose definition this HLDefn depends. This can then be stored on the function S
which will usually be a slot.

CombinerFor - [FSet (UnitType ('P Anyrunctic.,))] This slot appears in a unit X for a
type of functions, and lists those slots which are defined out of old ones by using X

Inverse: UsingFunctionals

ToParseParts - jFSingleton FunctionTypel This value is used by each Slot Combiner to
parse its list of arguments.

AnyLogicalOp (27) - Fill in later.
SuperClass: AnyFunctional
Direct Examples: L..Optional L-NOT L-QR

f2 . ..

Appendix E: Special Units B.iS

AnySlotCombiner (28) - An operator which takes some old slots and defines a new one
out of them.

SuperClass: AnySlotListFn AnyFunctional
Direct Examples: DoneIndirectly Listing PutinOrder Soften OneOf Plussing OrderedUnioning

Unioning OrderedComposition OrderedStarring Composition Application
Starring FirstOk Intersecting CommonXProd Subsetting

The following slots are defined for all "SlotCombiner "s:
FhForlnverting - [FSingleton FunctionTypej To find the inverse of a slot, one can

examine the high level definition of that slot, and attempt to invert that. The
FnForlnverting slot of a slot combiner, SC, is a function which takes as an argument
a high level definition, and returns the high level definition of a slot which computes

the inverse functions from the original slot.

FhForUpdating - JFSingleton FunctionTypel When a new value is placed in a slot,
several other slots in the Knowledge Base must be updated. Such updates are
performed by executing the code stored in the KBUpates slot of this slot. The
FnForUpdating slot of a slot combiner is used to compute this KBUpdates . It
takes a high level definition as its argument, with this particular slot combiner as
principle slot combiner, and returns, essentially, the value for the KBUpdates slot
for this slot (defined by that high level definition).

FnForCaching - [FSingleton FunctionTypel After the value of a slot has been computed
(using the slot's definition,) RLL then considers storing that value away. Each
slot combiner suggests an appropriate algorithm for deciding whether to store such
values, and where. That procedure is encoded in the FnForCaching slot of the slot
combiner. (This function takes a high level definition as an argument, and returns
a function to fill the ToCGche slot of a slot.)

AnyPredicate (29) - These functions return a value which is used as a Boolean - i.e.
they serve to intensionally define a set.

SuperClass: AnyFunction

AnyStorableFn (30) - This class contains those functions whose value, on some input,
might be stored, (or cached,) away. Note at least one of the arguments must be a
unit.

SuperClass: AnyFunction
SubClass: AnyUnitListFn

The following slots are defined for all 'StorableFn "s:
ToCache - fFSingleton FunctionType) The function stored here is called after a value

has been calculated. This function then decides whether to store this value for future
use, and if so, where.

E.16 Appendix E: Special Units

StoredAList - [FSet (FSet UnrestrictedType) This stores some i/o pairs for this func-
tion, as an association list.

LijpFnForSoredFh - [FSingleton FunctionType This function, used as the value for
LiapFn, does the following: First try to find the value by looking it up. If that fails,
compute it; and consider caching the results. Of course, then return the computed
(or retrieved) value.

Tovnualidate - JFSingleton FunctionTypel The function stored here is used when some
cached value is to be discarded.

ToConfirmValue - [FSingleton FunctionTypel When retrieving a potential value for
some input data, the predicate stored on this function's ToConfirrmVaue slot is
used to see if this value is valid.

ToLookUp - [FSingleton FunctionTypej The value of this slot is a function, which
attempts to retrieve a cached value of this function.

AnyUnitListFn (31) - Here will be any mapping which takes, as an argument, one or
more units

SuperClass: AnyStorableFn AnyFunction
SubClass: AnySlotGetter AnySlotListFn AnyUnitFunction

AnySlotGetter (32) - Examples are the units used to get the list of slot types which new
units, created using some inheritance mechanism, should have.

SuperClass: AnyUnitListFn
Direct Examples: PossibleSlotsOfISubClass PossibleSiotsOflTypEx PossibleSlotsOflExamples

AnySlotListFn (33) .Descendants are functions which takes one or more slots as
arguments.

SuperClass: AnyUnitListFn
SubClass: AnySlotCombiner

AnyUnitFunction (34) -Descendants each represent a mapping which takes, as an
argument, a unit.

SuperClass: AnyUnitListFn
SubClass: AnySELFSIot AnySlot
Direct Examples: FunctionSpec MyKE

The following slots are defined for all 'UnitFunction"s:
HandDoneSBF- fFSet SlotTypel This is used to enter the names of slots (or, in general,

functions,) which current slot was built from.
UsingStotCombiners - INotAFormat NotAIRange] Appears as a slot in unit X, and tells

how X was defined out of other slots

Ii

Appendix E.- Special Units E-17

HighLeveiDefn: (Subsetting UsingFunctionals (MeinberOf Allisas AnySlotCombiner))

A fte et tValue - IF Singleton FunctionTypel The value of S:AfterGetValue is a function
which is applied to a unit U the S and the value U:S, after determining this value.
Any final test to be made, can be done here.

ToGetValwie - (FSingleton FunctionType) The function stored on a function's ToGet Value
is invoked when one requests z:S.

LispFnForSlot - JF'Singleton FunctionTypel The value of S:LispFht is a function, which,
when applied to a unit, U , returns the value of U:S.

AIlSEF - IFSet SlotTypej This stands for All Slots Built From . It is used to hold the
set of all slots which affect this one - that is, x:S may have to be invalidated it the
Vj slot of some unit is changed, whenever y ES:AIISBF.

Inverse: SlotsUsedlnB ui]ding
HighLevelDefn: (Unioraing SlotaB uiltFrom HandDoneSBF)

Be foreGet Value - (FSingleton FunctionTypel The value of S:Eef oreGet Value is a func-
tion which is applied to a unit U and a S, and returns nonNIL if these argurments
are appropriate.

4ActuolGet Value - (FSingleton FunctionType) The value of S:ActualGetValue is a func-
tion which is applied to a unit U and a S , and returns acutally does the retrieval
of the vaue of U:S .

AnySELFSlot (35) - Descendants of this are the oft-spoken syntactic slots. That is,
they each refer to this unit, quo unit, rather than what this unit represents. See
ADyCT&U and AnyAT&U to understand this hackery.

SuperClass: AnyUnitFunction
There are currently 9 examples.

The following slots are defined for all "SELFSlot"s:

SI oredinTypA a - JFSingleton SlotT ype) This points to slot which holds the inheritable
value in typical example units.

Inverse: StandsForSlot

AnySlot (36) - Every function which takes a unit as an argument, and which MAY BE
STORED ON THAT UNIT, is a slot; and descends from AnySlot

SuperClass: AnyUnitFunction
SubClass: AnkyComputableSlot AnyField AnyinheritableSiot Any~rirnitiveSlot

The following slots are defined for all 'Slot "s:
Comput cW%enA ied - IFSet SlotTypej Whenever a new value fills U:S, the value of S:T

should be recomputed for each T ES:Comnpute~henF~lled.

E-18 Appendix E: Special Units

I*E..entialFor - tFSet UnitTypej Some virtual &lots must be stored on a unit for
bootstrapping reasons. S:IaEsentialFor holds a list of units which require this
S slot.

Inverse: MyEssentialVirtualSlots
Inverse - [FSingleton SlotTypel Stating S is the Inverse of a T means x -yv.S iff y

Ex:T. The E relation means a =b if b is a singleton, otherwise a is in the list, b.
Inverse: Inverse

SuperSlot - [FSet SlotType] Stating SS is a SuperSlot of S means the value of x:S
will be a subset of the value of x:SS, for all x in their common range.

Inverse: SubSlot
SubSlot - [FSet UnitType] This is the inverse of SuperSlot .

Inverse: SuperSlot

MakesSenseFor - [FSet (UnitType (*P AnyArchetype))] A given slot, S, may only be
defined for certain particular units. S:M4ke*SeneFor points to a list of typical-
example units. This S slot makes sense for each instance of each such unit.

Inverse: NewP ossibleSlots
ToPutValue - JFSingleton FunctionType) The function stored on S:ToPutValue is called

whenever putting a new value onto U:S.
Tolnitialize - JFSingleton FunctionType] When creating a new unit, all of the existing

inheritance mechanisms first gather a collection of slots, which are meaningful to
this new unit. Each slot, S , is then asked for its 5:Tornitialize function, which
is then run. It is the responsibility of this function to actually store an appropriate
value on this new unit.

SuperSlot*- [FSet UnitType A list of a unit's SuperSlot, THEIR SuperSlot, etc.
Inverse: SubSlot*
HighLevelDefn: (Starring SuperSlot)

SubSlot - [FSet UnitType A list of a unit's SubSlot, THEIR SubSlot, etc.
Inverse: SuperSlot*
HighLevelDern: (Starring SubSlot)

ToAddValue - JFSingleton FunctionType Whenever one wishes to add one a value to
the current value of U:S, the function stored on S:ToAddValue is called.

ToDeleteValue - IFSingieton FunctionType] Whenever one wants to delete a value from
the list of values stored on U:S, the function stored on S:ToDeleteValue is called.

ToSubatValue - [FSingleton FunctionType Whenever one wants to substitute one value
for another, on the list of values stored on U:S, the function stored on S:ToSubstValue
is called.

Appendix E: Special Units E-19

KBUpdates - (FSingleton FunctionType] Whenever a value is stored in a slot, various
changed must be made throughout the Knowledge Bases, for truth maintanence
reasons. A function designed to perform such modifications is stored in the KBUpdates
slot of each slot. S:KBUpdates is called whenever the value of x:S is changed.
This KBUpdates is calculated using the FnForUpdating slots or the various Slot

Combiners used to define this S slot.
V rifyAll - [FSingleton FunctionType] Before accepting a value for storage on U:S, it is

tested for acceptability. This is done by calling S:VerifyAll on this proposed value.
VerifyElement - JFSingleton FunctionType When adding a new value to a slot's existing

value, or substituting one value for another, it is often costly, and unnecessary, to
check all of the values for acceptability. To verify the validity of one value, the
function stored on S:VerifyElement is called on that proposed new element.

OrderForTolnit - IFSingleton IntegerType] Each slot will have a value, stored here,
which indicates at what time its Tolnitialize function should be invoked when a new
unit is being created. It may use the global variables: uParent, ulnheritance, and
uAllInheritantedSlots, to make its decision.

ActualPutValue - JFSingleton FunctionType The value of S:Act alPut Value is a func-
tion which is applied to a unit U , a S , and a value V, actually stores V on U:S

ActualAddValue - JFSingleton FunctionType] The value of S:ActualAddValue is a func-
tion which is applied to a unit U a S, and a value V, and returns actually does the
addition of the value V to the U:S.

ActualDeleteValue - [FSingleton FunctionType] The value of S:ActualDeleteValue is a
function which is applied to a unit U a S, and a value V, and returns actually does
the deletion of the value V from the U:S.

ActualSubst Value - [FSingleton FunctionType] The value of S:ActualSubstValue is a
function which is applied to a unit U a S, and values V and W, and returns actually
does the substitution of the value W for thevalue V in the U:S.

AnyrComputableSiot (37) - These slots are redundant, as they could have been com-
puted from other, more basic slots. (Modulo Garden-Of-Eden conditions. See
MyEssentialVirtualSlots .)

SuperClass: AnySlot
There are currently 72 examples.

AnyField (38) - Slots on sub-units (that is, units devoted to storing the value of a slot
of a given unit,) are called fields. Those *slots' which appear only in this context
are stored under AnyField.

SuperClass: AnySlot
Direct Examples: *vaLue* LivesInLocation LivesInSlot LivesInUnit

S-20 Appendix E: Special Units

AnyInheritableSlot (39) - Descendants of this class are slots whose value may be inherited
from some prototype of the unit in question. Or course, if there is a value stored on
that unit, that value will be used.

SuperClass: AnySlot
SubClass: AnyAccessSlot AnyFormatFnSlot

Direct Examples: ToLookUp ToConfirmValue OrderForTolnit

AnyAecessSlot (40) - Descendant of this AnyAccessSlot are slots used to manipulate
the units themselves. For efficiency, they all use the same fast retrieval mechanism
to determine their respective values - GetAccesjFn.

SuperClass: AnylnheritableSlot
Direct Examples: Tolnyalidate ActualSubstValue ActualDeleteValue ActualAddValue

ActualGetValue ActualPutValue ToGetValue BeforeGetValue AfterGetValue
ToPutValue BetorePutValue AfterPutValue ToAddValue ToDeleteValue
ToSubstValue Tolnitialize MyToKillMe ToCacheField ToCache ToIlIValue
MyToRenameMe

AnyFormatFnSlot (41) - Various bits of information are associated with each format.
When this information is functional, it descends from this AnyFormatFaSlot.

SuperClass: AnylnheritableSlot
There are currently 8 examples.

AnyPrimitiveSlot (42) - Primitive slots, which descend from this AnyPrimitiveSlot
, cannot be computed if omitted. (As opposed to computable slots, which are
technically redundant information, as they can be computed from more basic slots.)

SuperClass: AnySlot
SubClass: AnySlot-Instances

There are currently 96 examples.

AnySlot-Instances (43) - Aliases used for syntactic slots are stored under AnySlot-
Instances . These are used to hold values which should be inherited from typical
example units; freeing the basic slot to hold the value pertanent to this particular
unit.

SuperClass: AnyPrimitiveSlot
Direct Examples: SlotsNowOrdered-Instances EssentialVirtualSlots-Instances ToKillMe-

Instances ToRenameMe-Instances
The following slots are defined for all "Slot-Instances"j:

StandsForSlot - [FSingleton SlotType] This points to the name of the syntactic slot for
which this is an alias.

Inverse: StoredInTypAs

Appendix E: Special Units E-21

AnyUnitListProcess (44) - These procesaes take one or more units (amoung possibly
other things) are arguments.

SuperClass: AnyProcess
SubClass: AnyUnit? rocess

AnyUnitProcess (45) - These processes take a single unit as its argument.
SuperClass: AnyUnitListProcess
Direct Examples: EditUnit

AnyUnit (45) - Examples will be things which REPRESENT units... NOTE: this does
NOT. include every unit automatically! (In fact, most units represent some real world
object, such as Tree#32, or some conceptual entity, such as Red, or Function#412.)

SuperClass: Anything

The f ollowing slots are def ined f or all "Unit "s:
MyCreatedAs - fFListN (UnitType (*P Anylnheritance)) (FList IjnitType)I This stores

inheritance information about this unit - indicating, for example, that it was, created
as an tE xamples (read 'E xample") of AnySlot.

MyEssentialVirtualSlot, - IFSet SlotType) These slots are essential for the Garden of
Eden RLL system. Therefore Rem oveVirtualSiots is smart enough to know NOT
to remove these slots (i.e. those which MyEsserntiafl'irtualSlots points to) from a
unit.

Inverse: IsEssentialFor

M&TimeOfCreation - [FSingleton StringTypel This records when this unit wag created.
MyCreator - IFSingleton StringType) This names the user who created this unit.

MyToKillMe -)FSingleton FunctionType) This function is called when deleting this
unit.

MySl ots Now Ordered -)FSet SlotType) This lists the names of slots which are currently
in the correct order. (For example, OrderedProtottypes appears in some unit's

MyEssential~irtualSlots only when the typical example units stored in P'rototypes
have been arranged in the correct order.)

MySensibleSlots -)FSet SlotType] Only certain slots are defined for a given unit. This
list is stored in that unit's MySenuibleSlots.

HighLevelDefn: (Composition NewPoss ibleS lots Prototypes)

MySlots - JFSet SlotType) This never cached slot returns the list of slots belonging to
this unit.

Inverse: AmUsedln
MyToRenameMe -)FSingleton FunctionType] This function is called when renaming

this unit to another name.

E-22 Appendix E: Special Units

AnyUser (47) - RLL tries to hold some primitive information about each user of this
system. A unit is devoted to each user, (as well as each recognised user class) ; and
this information is under AnyUser.

SuperClass: AnyCT&U
SubClass: AnyHacker

Direct Examples: AndyFreeman LarryHines
The following alots are defined for all 'User"s:

InforrnalName - JFSingleton StringTypel This is a name RLL can use.to greet this
user.

UaualKBs - JFSet XBTyepe) These are the Knowledge Bases this user usually wants
loaded in.

WritingOptions - [FList NonNILTypej When closing a Knowledge Base, RLL must ask
the user several questions. To sidestep this tedious (and often unneccessary) process,
the user can indicate a fixed set of responses to such inquires; which are stored on
this WritingOptions siot. When closing the XBs, the user is now asked a single
question - if he wishes to use these. (Answering No forces RLL to ask him these
questions one by one.)
The defaulted writing function, StandardFinishUp, asks if virtual slots should be

removed, if this KB should be disconnected from the others, and if this IG should be
diagnosed; in that order. Setting WritingOptions to (Y N Y) instructs RLL to remove
virtual slots, and diagnose the KB, but not to disconnect it.

OpenningOptions - FList UnrestrictedTypel Like WritingOptions , this helps the user
to avoid a potentially dull task. The value stored here will be handed to the function
called when openning each knowledge base; if the user indicates he wishes his default
setting to be used.
The only question StandardStartUp might ask is whethr to reconnect an enterring

knowledge base. Setting the OpenningOplionj slot to (NIL) means this question will
be asked each time.

UserNames - [FSet StringType This iis's the system names this user may go by. (le
values of USERNAME) which correspond to this person.)

Anyllacker (48) - This class includes people working on RLL.
SuperClass: AnyUser

Direct Examples: DougLenat PRussGreiner

AnyConcreteThing (49) - Instances refer to tangible objects, (such as trees,) as opposed
to abstract things (such as variables)

SuperClass: Anything

tI

Appendix E: Special Units E-23

E.4: INDEX or UNITS.
For indexing purposes, the classes shown in Section E.3 were numbered sequentially.
This value is used in the index below, to indicate in which class each of these units
(representing classes, their examples and significant slots) belong.

*uaLue * (Slot). 38,6 AnyFormatFaSiot (Class) .. 41
Act uaLAdd Value (Slot) . . .40,36 AnyFunction (Class) 25
Act ualDelcte Value (Slot) . .40,36 AnyFunctional (Class) . . . 26
Act uaiGet Value (Slot) . . .40,34 Any~acker (Class) 48
ActuaiPut Value (Slot) . . .40,36 AnylndireetPtrForrnat (Class) 16
Act ualSubst Value (Slot) . 40,36 AnyinheritableSlot (Class) . . 39
AfterGet Value (Slot) .. 40,34 Anylnheritance (Class) . . . 20
AfterPutValue 40 AnyIntensioaalObject (Class) .. 3
AllExamples (Slot). 17 AnyLogicalOp (Class) ... 27
AllGenls (Slot). AnyOverhead (Class) 21
Allis (Slot) 1 AnyI'artialSpec (Class) 8
A IISBF (Slot). 34 AnyPredicate (Class)29
AllSpec. (Slot). 1 AnyPrimitiveSlot (Class) -. 42
AndyFreeman. 47 AnyProcess (Class) 23
AnySELFSlot (Class)35 AnySlot (Class) 36
AnyAT&U (Class). 2 AnySlot-Instances (Class) . 43
AnyAbstraetThing (Class) . .. 9 AnySlotCornbiner (Class) . 28
AnyAceessSiot (Class)40 AnySlotFormat (Class) . . . 14
AnyAction (Class) 24 AnySlotGetter (Class) . . .32
AnyActionSequence (Class) . 19 AnySlotListfn (Class) ... 33
AnyArchetype (Class) 4 AnyStatus (Class).......22
AnyCT&U (Class) 10 AnyStorableFo (Class) . . .30
AnyCharacteristic (Class) . 11 AnyUnit (Class) 46
AnyClassOfObjects (Class) 17,1 AnyUnitforSlot (Class) 6
AnyComnputableSlot (Class) 37 AnyUnitFunction (Class) -. 34
AnyConcreteThing (Class) . 49 AnyUnitLiztFn (Class) . .. 31
AnyDatatype (Class)12 AnyUnitistProcess (Class) 44
AnyDecomposable~bject (Class) 18 AnyUnitProceas (Class) . 45
AnyDescriptor (Class) 5 AnyUser (Class) 4T
AnyField (Class). 38 AnyValueForinat (Class) . . 15
AnyFormat (Class). 13 Any~ariable (Class) 7

hLA

E-24 Appendix E: Special Units

Anything (Class) 1 FSeeUnit. 16
Application. 28 FSet............14
ApplyingFn 26 FSingleton 14

ApplyToEach. 26 FirstOk 28
ApplyingFn. 26 FnForAdding (Slot). 13
BeforeGetVaitze (Slot) . . .40,34 FnForCaching (Slot)28

BeforePutValue 40 FnForDeleting (Slct)13

BooleanType 12 FnForGetting (Slot)13

CWJ~sedBy (Slot). 23 FnForlnuerting (Slot)28

Characteristics (Slot) 1 FnForKilling (Slot). 13
CombinerFor (Slot). 26 FnForPutting (Slot)13

ComrnonXProd 28 FnForUpdating (Slot)28

Composed~f (Slot). 18 FnForVerifyin gAll (Slot) . .13
Composition 28 FraForVerifyingElement (Slot) 13
Compute'WhenFiled (Slot) .. 36 Format (Slot) 25
DataRange (Slot) 25 FormatCharacter (Slot) . . .13

Datatype (Slot) 25 FunctionCharacter (Slot) . .25
Definition (Slot). 25 FunctionSpet 34
Dein (Slot). 25 FunctionType 12
DefnUsedBy (Slot). 23 GenerateAil (Slot) 12
DependentNet works (Slot) . 22 GenlAct (Slot). 24
Descr (Slot) 1 GenlAct *(Slot) 24
DescribeUnit 24 Genli Models (Slot). 17
Domain (Slot). 25 GetCVs Used (Slot) 26
DomainOf (Slot). 17 Get~nsUsed (Slot) 26
DomainType (Slot). 25 GetPose ibleSlot.Fn (Slot) . .20
DoneIndirectly. 28 Han dDoneSBF (Slot)34

DougLenat. 48 HighLevelDefn (Slot)25

EditUnit. 45 HouiToP'rocess (Slot)23

EqualDTSpec (Slot). 12 lExamples 20
EssentialVirtualSioti-Ingtances .43 ISubClass. 20
FBag 14 ITypEx 20
FExecute. 15 IUseCVOf (Slot) 23
FList 14 JUseDefnOf (Slot) 23
FListN 14 Inf ormaliame (Slot)47

F~neOf 15 IntegerType. 12
FOrderedSet 14 IntensionalEzamples (Slot) .1T

FSeeSlot. 16 Intersecting. 28
FSeeU&S. 16 Inverse (Slot) 36

Appendix E: Special Units E-25

I*BuiltFrom (Slot) 25 NonNILType 12
IsE.sentialFor (Slot) 36 NumberType 12
IsTypeOf (Slot) 12 OneOf 28
Isa (Slot)1 OpenDate (Slot) 22
KBType 12 OpenningOptiona (Slot) . . . 47
KBUpdate, (Slot) 36 OrderForTolnit (Slot) . . 39,36
KBsConnectedTo (Slot) . 22 OrderedComposition 28
KBsFNS (Slot) 22 OrderedPrototypes (Slot) . . . 1
KBsFreeBlocklndez (Slot) 22 OrderedStarring 28
KBsUnitlndez (Slot) 22 OrderedUnioning 28
KB. VARS (Slot) 22 Plussing 28
L-NOT 27 PossibieSiots (Slot) 4
L-OR 27 PossibleSlotsO fie xamples 32
L-Optional 27 P ossibleSlotsO flSubClass 32
LarryHines 47 PossibleSlotsOflTypEx 32
LipFn (Slot) 23 PreConditions (Slot) 25
LispFnForSlot (Slot) 34 Prototypes (Slot) 1
LispFnForStoredFn (Slot) . . 30 PutInOrder 28
Listing 28 RLL.STATUS 22
LivesInLocation 38 Range (Slot) 25
LiveslnSlot 38 Rangelnterpreter (Slot) . . 12
LiveslnUnit 38 RangeOf (Slot) 17
LoadFiles (Slot) 22 RangeType (Slot) 25
MakeeSenseFor (Slot) 36 RussGreiner 48
MemberOf 26 SlotType 12
MyCreatedAs (Slot) 46 SlotsBuiltFrom (Slot) 25
MyCreator (Slot) 46 SlotsNowOrdered-instances . . 43
MyEasentialVirtualSlots (Slot) 46 SlotsUsedlnBuilding (Slot) . 25
MyKB34 Soften 28
MyRefineSlots (Slot) 8 SpecAct (Slot) 24
MySensibleSlots (Slot) 46 SpecAct * (Slot) 24
MySlots (Slot) 46 Specializations (Slot) 1
MySlotsNowOrdered (Slot) . 46 StandsForSlot (Slot) 43
MyTimeOfCreation (Slot) 46 Starring 28
MyToKilIMe (Slot) 46,40 StdEzamples (Slot) 17
MyToRenameMe (Slot) . . 46,40 StoredAList (Slot) 30
NetworkStatue (Slot) 22 StoredlnTijpAs (Slot) 35
Networks (Slot) 22 StringType 12
NewPoeuibleSlots (Slot) 4 SubActions (Slot) 19

I

*E-26 Appendix E.- Special Units

SubCtasa (Slot) 17 UnrestrictedType 12
SubClasg. * (Slot) 17 UseToGetSlots (Slot) 20
SubDT (Slot) 12 U. erNames (Slot) 4T
StubDT* (Slot). 12 UsingFtsnctional. (Slot) . .. 25
SubStot (Slot). 36 UsingFunctions (Slot) 25
SubSlot *(Slot). 36 UsingSlot Combiners (Slot) .. 34
SubTypEz (Slot) 4 UsuaIKBs (Slot). 47
SubTypEz (Slot). 4 VerifyAll (Slot) 36
Subsetting 23 VerifyArgs (Slot). 23
SuperClass (Slot) 17 VerifyElement (Slot) ... 36
SuperCi ass * (Slot). 17 VerifyType (Slot). 12
SuperDT (Slot) 12 WhatToPracess (Slot) 23
SuperDT* (Slot). 12 W7enOpeningNetwork (Slot) 22
SuperSlot (Slot) 36 WN en WritingNetwork (Slot) 22
SuperSlot * (Slot). 36 Writ sngO ptone (Slot) 47
SuperTypE: (Slot). 4
SuperTypE * (Slot) 4
ToAdd Value (Slot). 40,3 6
ToCache (Slot). 40,30
ToCacheField. 40
ToCon! irm Value (Slot) . . 39,30
ToDeleteValue (Slot) 40,36
To~et Value (Slot) 40,34
Tolnitialize (Slot) 40,36
TolnwaLidate (Slot) 40,30
To~IlIMe-Instances 43
Toll Value. 40
ToLookUp (Slot). 39,30
ToParseParts (Slot). 26
ToPulValue (Slot) 40,36
ToRename~le-Instances . . . 43
ToSubst Value (Slot) 40,36
TotalSoFar (Slot) 17
TypicalE: ample (Slot) 1T
TypicalEzampleOf (Slot) 4
Unioning. 28
UnitEzamplee (Slot) 17
UnitType. 12
Unit aBuittFrom (Slot) 25

F. APPENDIX - Environment
The functions most RLL-l users will need fit into three basic groups. Those which a novice user
should know are listed first, organized by topic. These top level functions place essentially no
restriction on the nature of the knowlede base on which they are used. The next group of functions
are one level deeper, consisting of the functions required for bootstrapping RLL-1. These are listed
alphabetically. Most of these functions live in some unit, and are used by default -- i.e. unless
overwritten. The final category are utility functions, which augment LISP in useful ways.

The rest of this appendix list miscellaneous functions which have been adviced or altered and
relevant global variables. The various functions and variables which, comprise CORLL, (see
[SmithD) may be used as well. (Recall RLL-1 is built on this unit-management system.)

These functions will, in general, return NIL only when some error has been encountered -- for
example, when the slot in question is not really a bona fide slot. Also, many of the parameters
mentioned below are optional, and serve only to speed up the functions processing, if supplied. To
indicate this distinction, each required parameter will begin with a capital letter, while each extra
one will start with a lower case letter.

Thanks to a special "hack" made to LISP's interpreter, many of the units can serve as functions.
Seeing (FN arg I arg 2 ... argN), LISP will first attempt to apply the functional definition of FN (i.e. the
lambda expression stored in (GETD 'FN)) to these arguments. If (GETO 'FN) is NIL. before raising an
error interrupt. LISP will then check if FN is a Process -- that is, a unit which descends from
AnyProcess. If so, and if the arguments. (arg1 arg2 ... argN), are in the domain of FN, (iff (APPLY-

(GetVa!ue FN 'VerfyArgs) arg, ar9 2 - argN) is nonNIL), LISP will (APPLY' (GetValue 'FN 'LispFn) arg1 arg 2

... arON), and return that result.

As mentioned in subsection 5.5, much of the "smarts" of RLL-1 has been relegated to some unit, as
opposed to the more standard practice of simply coding it opaguely into some (set or) functions.
For example, there is no mention below of Fields, (or any other indirect pointers,) which Appendix
B.4 implied must exist. This information has been placed within the FSeeUnit unit, which "knows"
how to access such values, and how to modify them. Hence we saw the value physically stored in
the Age slot of Mary was "(,Co FSeeUnits 39 (U4S AgeOfMaryGO0) (U4S AgeOfMaryOO2))'. (The initial
"'Oo-" indicates this is'a special slot value: see Appendix D.4.) This particular mechanism, of using
"value formats". has'other. less epistemologically motivated uses. For example, to indicate the Color
of George is either Green or Red, on can put the value "(oo* FCneCf Gree Red)" into George's Color
slot.

D.1: Top Level Functions

Overhead:

Unitp[unit I -- Returns nonNIL iff Unit is a unit, belonging to one of the networks currently loaded
in.

Processp(Process I -- Returns nonNIL iff Process is a process which belong to one of thc networks
currently loaded in. As this is bften involved in the l'erij5'Args test described above, any
Knowledge Base which uses processes is expected to provide RLL-1 with such a function.
(This happens to reside in ProcessType:VerlyTyrpe.)

Slotp[Siot] -- Like Processo, this returns f2OflNIL iff slot is a slot which belong to one of the
networks currently loaded in. Again. any Knowledge Base which uses slots is expected to
provide RLL-1 with such a function. (This happens to reside in SlotType:VeriyTypo.)

2

E-DIT[unit extra] - Calls the LISP editor on thc Slots; and their values of this unit. T'hey will be
arranged as a property list. The cffiect will be the same as ictuall:: perfrorming a
PutValueLunit Slot value ald extra] for each slot changed, where value is ite new value stored in
this slot, and old is either the value which had been there or r'ecomputeMe.

Notes: ECITU is an NLAMBDA, dia EDITP.
Like EP, "EL" is a LISPXMACRO, as well as a USER.MACRO.
One can terminate the editting session, without performing the changes, by typing

"ABORT".
Typing "P-A x y z" will reset extra to the value (x y z).

(P-A) resets extra to NIL.
Ending a session with "SimplePut" will use the CQRL-L function UA-PUTVALuE, rather

than the full PutValue.

D1(Unit otther deoth Prints cut the (psuedo-) hierarchy of units, starting withi the unit. unit. (if
omitted. will start from the root, called Anything.) The optional list, othier, Specifies which
branches to take on the descent. As with sictp, each Knowledge B~ase should supply this
function. (In this implemnentation,) if other includes any ot' Cs SubClass Soecs}, ail of the
ScecializationS (which is usually SubClass) Of each Unit, walked will be examined. Any of (T
Typ TypicailExaniple} will cause oi to print out the typical example of each class of each unit
walked. (E Eixampies} both print Out, Of the UnicExamples of each class unit walked. (By
def .il,. oi will fcllow all 3f these links.) This will stop rccur(s)ing down the tree aftcr (cp
deoth 1CCO) iter"ations.

STA.RT(-Stums che RLL-1 syswrem: tis will load in the desired Knowledge Bases, and perfobrm
other initiaiizing functions.

CetKBs[-F his ?,nction 'cads in the RLL Knowledge Base, and then the others the user has

requested.

Close[-- Closes each Knowledgye Base now open.

CANCELI - Cancels each Knowledge Base now open.

CC[-- Asks the user whether it should Close or Cancel each Knowledge Base now open, and
does so.

Retrieval:

Slot's value

GetValue[Unit Slat other*s] -This is RLL-I's basic get. It returns the value derived by applying
Slot:7ooetValue to Unit. slat and others. (Tie semantic SOf the optional third argument
depends on that stored function.) As this Slot is accessible to the user, he can code
arbitrarily complex rotroival schemes. The current value Of ToGetvalue:ToGevalue is
GetAccess~n. As Shovn above, (in A\ppendix A.!, or subsection 4.3) the result of the
function Call. (GetAccesa~n Slat ToGetvalue). is applied to (Unit Slat others). The value this
returns is returned by the overall C-elValue.

Writing:

Slot's value

PutValuef Un~it Slot Value aidvalue why IThis is RLL- l's vanilla put function. It calls the funct'on
Siot:T3Ppirvaiue, handing it all the arguments listed above. [Recall that only the first thre

3

arguments are rcquired; of the others, (those beginning with a lower case letter,) oldvalue
will be computed if it is not given and found to be necessary.]

AddValue[Unit Slot Value oldvalue why extra 1 -- This function is used to add a new value to the list
of entries already stored as Unit:Slot, using the function stored on Slot:ToAdd Value. By default,
(i.e. stored on TypicalSlo(:ToAadValue), DefaultAddValue will be called on this argument list. The
variable "why" holds information describing why this operation was performed; and "extra"
is used to additional (non-why) data to the actual adding function. (Note Deletevalue and
SubstValue use these same two extra arguments, for the same purpose.)

DeleteValue[Unit Slot Value oidvalue why extra] -- Like AddValue, this function is designed to
remove a value from the list stored on Unit:Slot, using Slot:Tocelte Value. By default (i.e.
stored on TypicalSlot:ToCeleteValue), DefaultOeleteValue will be called on this argument lisL

KillValue[Unit Slot oldvalue why] -- This removes all traces of the slot Slot from the unit unit. It
should be the same as performing a Putvalue[Unit Slot RecomputeMe oldvalue context why].
It actually uses the Slol:roKillValue, which defaults to the value stored on TypicalSlot:ToKillValue,
DefaultKillValue.

SUb V ,aiu[Unit Slot TcValue FromVralue oldvalue why ixtra] - This substitutes the value FrcmValue
with the value ToValue in Unit:Slot. The value of Slot:ToSubstValue, which defaults to
CefauitSubstValue, may be LuScd.

CacheValuef unit Slot Value why] -- This is the command issued which considers storing Value on
unit:Slot. By default, (i... stored on TypicalSlot:ToCac.' eVa/ue). DefauitSlotCacher will be called
on this argument list.

KB .Mar. gement:

CreateUnit[unit KnowledgeBase] -- This creates a new unit. named Unit, adding it to the
Knowledge Base, KnowledgeBase.

NewUnit[Unit Inheritance ParentSet KnowledgeBase] -- This creates a new unit, named Unit. which is a
descendent of each member of the ParentSet, by the inheritance, Inheritance. After some
preliminary overhead, it calls initializeUnit, whose mechanism has yet to be "officially"
decided..

KillUnit[Unit I -- Deletes the unit named Unit, disconnecting all of its links. (The end result
should be as if this unit had never existed.) It really calls Unlt:MyToKillMe, which defaults
(when Typicalunit is reached) to DefaulItKillUnil.

RenameUnitf Ne'wName Unit KB] -- This changes the name of the unit, Unit. to be Ne.Name, in the
Knowledge BasC, K8, and propagates the effects of this change. It really calls
Unt:MyToerenameMe, which defaults (when TypicalUnit is reached) to DefaultRenameUnit. (This
will often be intercepted, by, for example, the value of TypicalCLass:MyToRenameMe.)

D.2: Functions Needed to Bootstrap RLL-1

Many of these functions reside somewhere in the RLL-1 Knowledge Base. This
information is listed below; following the list of arguments

i
A

4

AddlnverseLinks[unit] -This add the inverse links (back pointers) to every :in", emanating
from Unit.

CachelfOK[unit Slot Value aidValue why I Caches Value ifl Unit:Siot only if IsCk(Value 1

CachelfNonTrivial Unit slot value aidValue why ICaches value in Unit:S:z,.;t only if lsck[Value
and Value does not equal (LIST Unit).

CleanWS[] -- This tells CORLL that no unit has been writtent OUL The first call to the CORLL
function UP.PUTUNrr will "dirty" the current work space; undoing this fact.

CreateSlotf HL~efn KB sv] - This creatcs a new slot, whose high level definition is HLcefn. This
new slot will be stored in the knowledge base, KB. The user- may optionally add other slots
to this new unit; these would be passed as a list of dotted pairs, in the sv argument.

DefaulLActualAdd Valuie [Unit Slot Value oidvalue why exira I -- {TypicalISlot:A.crual~iddVal1ueI
This function actually adds on a new value, value, onto Unit:Slot. whose value is now olavalue.
It will call on the appropriate slot format (or value format) as required.

DefauitActualDeleteVa1Lue[Unit Slot Value oidvalue wny I TypicaiSiot:A.c:uaiDeleeValue}
This actually deletes an old value. It is, in form', essentially ideritcai :0 CefaultActualAacValue,
guided once again by SloLot-mat.

Defaultkctual(_-etValue[unit Slot others I- {TypiclSlot:.AciaGetValue}
This is used to actually retrieve (and 17ecomDutE, if nccssary,) the value of the slot slot of
the unit. Unit. The others argument contains a list of zero or more values, which are used
modify this process: for efficiency reasons. Thc next two paragraphs will describe xhat
OetaultActualGetvralue will do when others is NIL.

It will first use UA-GETY1ALUE to find if any valuc is physically stored an the s,-C: slot
of unit. If that value satisfies Must~econzputep, (i.e. is NIL, or ReccmputeMe.)
DefaultActuaiGetValue will apply siot:Detn to Unit and siot, and locally store the resulLThe
funntion CacheValue is then called on unit, slot and this stored value. This function,
described below. may physically cache this value in the knowledge base. In any event. that
value is the actual value Of Unit:Slot, and will be used in what follows.

If unit:Slot is a special slot value. (i.e. of the form 0o <value-bormat> ...j,) the value
Of the FnForGetfing Slot Of (value-format) will be called on this value, as well as Unit, slot and
the PnForaettrig Slot Of Slot:,Pormat. Otherwise these arguments will be handed to that
FnrirotGetting slot of Slot:Format. The value this call returns will be the result of this call.

Now for the exceptions: When FAST-GET is included in others, flo oeins will be
tested -- and hence no writes will be performed into the Knowledge Base. Including NO.
CACHE means no computed values will be cached (i.e. CacheVaiue will not be cailed),
although such values will be computed as necessary. 11IGNCRE-CACHE" tells
DetaultAetualGetValue to ignore any value stored in the Slot slot, and rely on SICt:DefiT. if
FAST-CACHE is included, it will be passed, as Fast-Cache, to that caching function. When
IMPURE is in that list, the global variibles uValue and uContext will be set to the value heree
returned, and the Unit on which this valuc was physically stored, respectively. The
remaining values arc all used to speed up runtime execution. NO-VALUE-FOPMAT indicate.s to
return the value found, rather than call1 the Value Format's FnForGeizing. (when that would
have been applicable).

DefaultActualPutValue[Unit Slot value oldvalue why] [TypicalSlocAcmalPutValue}
This function performs the actual put. The specifics of how this is done depends on
whether value or aldvalue has a value format, and on F, the i-ormat slot of slot. If both values
are unformatted, the PnForputtlng associated with thc unit F is called on appropriate
arguments. If either satisfies ValueFormattedp, the Fn~orPutting slot of that value format will be

called on thcse arguments, augmented With F-FniFoPutting.

Defaul1L-ctualSUbstV-,lue[Unit Slat Value Modification vhy] - f TypicalSlou:. Ictualfubsi Value)
This actually performs the sulbstitute of a new value for an old one. ithin the existing
value Of a Unit:Slot. The exact substituting process depends oil theC natUrc of Slot (in
particular, on the value of Siot:Pofmat).

DefaultAddValue [unit Slot Value oldvalue why extra J(TypicalSlot: To..lddValue}
This is the default way to add a new value. Like Oetauitputvaiue, it will ca:'.
Oefault~leforePutVaiue before performing this addition. (Here the value of single will be
nonNIL, and is used to indicate the nature of this alteration.) The exact adding process is
performed by oefauitActualikddValue. If this succeeds, DefaultAfterPutValue is called with these
arguments.
1"extra" tells whether a single value, or a list of values. arc being added; and whether the
cu~rrent value of Unit:S.'ot should be recomputed (using Slotzefn) if It is currently empty.

DefaultAfterGet~alue [unit Slot others I -- [T)picalSlot:,JfierGet Value}
Thiis is the detfault function executed after the actual getting within DefaultGetvaiue is
performed. (OefauitGetValue will return NIL if this function does.) Currc~ilv this function
sinipi" returns T.

DefaultAfterPutVahie [Unit Slot NewValue modif whv I -- {TypicalSloc:t:ferl'wVai'ue}
This is the deFault function executed after the actual putting within CefauitPutvalue is
performed. (DetaultPutvalue wvill return NIL If this funczion does.) This tunction is
responsible "or maintaining KB consistency, uSing Uidateinverse and UpdaleDe~end as
appropriate. It will also recompute the value of any essential virnlal slot which was just
now deleted, and will determine the value of certain othecr slots in a w niedmanner.

Def'aulrBefbreGetVa1lue [Unit Slot others I -- {TypicalSlot:BeforeGet *alue}
This is te default fuinction executed before the actual getting within cefaua-etvaiue :S
pcrformned. (DetaultGetValue will return NIL if this riinction does.) Currently tbis f'arczicn
simply returns T.

DefaultBeforePutlValue [Unit Slot OldValue modit why -{Typica]lot:Re''rrP:aIVe!ue}

This is thie default function executed before the actual putting within a DefauitPutVaiue is
performed. (CefaultPutVaiue will return NIL if this function does.) If tis value is being
enterred by tie User, this function will see if CIdValue is an acceptable value, using (by
default) OefaultverityValue.

DefaultDeleteClass [Unit] -- {TypicalClass:MyToKiIIl.e1,
This is the fuinction used for deleting a unit which represents a class. In addition to deleting
inverse links, this attempts to reclassify every example of this set, if the user gives the go
ahead.

Defalt~eleteSlot [unit I-- {TvpicaiSloc:AfvTo.KillA e}
This is the (unction used for deleting a unit which represents a SIOL In addition to deleting
inverse links, this attempts to remove every occurance of this sIlt if Lhe user gives the go
ahead.

DefaultDe!eteU4S [Unit]-{TypicalUnitForSlot:. MyToKilltfe}
This is the function used for deleting a unit which represents a slot's value. In addition to
deleting inverse links, this automatically resets the value of the slot in the host unit.

Defalt~eleteUnit [Unit I -- {Typicar~hing:.lyToKIIAe}
This is the default function used for deleting units in general. All it does is delete inverse

6

links.

Defau~tGetVa1Ue[Unit Slot others] -{TypicalSIoC:To~eiVa~ue}

This is used to retrieve (and recompute, if necessary,) the value of the siot slot of the unit,
Unit. The oth~ers argument contains a list of zero or more values, which are used modify this
process: for efficiency reasons. The next paragraph will describe what DefaultGervalue will do
when others i5 NIL.

After performing an initial type check on its first two arguments, DefaultGetValue Will
apply siotiloreaet Value to these arguments. If that returned nonNIL, the function stored on
Slot Ac.usi(*t value is called. The value this call returns will be saved. Finally,
SiotAtterGetvaitue is called on this value, unit and Slot. If all of these subfunctions succeed
(i.e. returned nonNu.), that stored value will be returned.

Now for the exceptions: When FAST-GET is included in others, the functions on
siot:BseoreGee valua and Siot:AtterGetvalue will not be executed. 7he remainingy values are all
used to speed up runtime execution. SAFESLOT and SAFEUNIT are designed to perform the
Must~eSlot and NlustmeUnit checks, on unit and slot. respectively, at compile timne. They are
only applicable if that parameter is a constant, i.e. is QUOTEd. SAFE- is thc same as
including both of these. VERYSAFESLOT and VERYSAFElJNIT totally avoid calling Mustee---
functions, even at Compile time. CCNST ANTSLCT means we may assume the values stored on
:he unit Slot will not change rrom now on. CONSTANTUNIT makes sirnillar assum-otions about
the unit. Unit. -rese can be undone using - AUTICUS, which insists on checking thu validity
of the arguments.

Defauit~eleteValue (Unit Slot Value oldvalue why I -{Ty;picalSlot: ToDele.,e;,elue}-
This is the default way to delete an old value. It is, in form, essentialily iaznticzi to
cefauitAod Value.

Def-u It Ki iValtie [urt ,::ot value context miy] - Typical~lot: ToII.,cueI
This ;s the .fauit way wo kij;l a slot and tcS value. !, :s. !n z .crm. essentially iden,::ai to
CetauttPutyiaiue. Only using the iFnrrilig Value sIlt Of th! Format slot of(Slot, rather than its
FiForPuning SIOL

Defau!TutValue, 2,nit S--ct value oldvatue why]- T;cio:Ti~le
This u.nction is uscd for putting a value in a slot. Usually. it !7s= calls Siot:8etcroePuC/afue on
the above argument list. augmented wvith one additional argumncnt, described tclcw. in in
errorfrec run. this will succeed (i.e. will return nonNIL.) and the actual writing will -le
performed by :he function stored on Siot:AcuaiPurValue. slotL.tferurvaiae !s then cailed cn the
same ,rgument h;st as Slot sefcrePjrl/alue. With %Vawe substituted for otdvalue.

If why inctuces Fast-Put. the before and afte.r functions will not be called. The extra
arglument expcc.ted by these tunctions (Slot:Setor*Pu'Vaiu9 and Slot:AftferPuVane) appea-rs
befobre Nhy, "sirgie". Its value should be NIL in tis case, and the other parameters should be
their values when handed to PutVajue. (single's use will te apparnE r=m Adcvalue,
Delete'/alue, and SuastVatue, defiried in Lhis section.]

De faull-R 2 i n-I eC ass[NeAtarne CidCiass] -- {TpcCis:M her'e }
TIh is is used to rename a unit which rcpresents a class to a new namne, aid :hen 7crf brming
thc ncessary K13 updates. It will. if' permitted. scan through c :ch unit loaded it. atctepig
to perform this substitution. Otherwise, it will simply follow its various pointers, and
change their value of their respective back-pointers t 'o reflect this chanige. It will then ask if
it should update first each function, and then all variables in the system very time
consuming processes.

Dc fau itRenameSlOtf NewName CtdSlot]-{TypicaiSlot:.I/y ToR enioneite}
This is used to rename a unit which represents a slot to a new name, and then performing
the necessary KB updates. It will, if permitted. scan through each unit loaded it. tempting
to perform this substitution. Otherwise, it will do two things: First. like DelaultRenameUnit. it
will follow its various pointers, and charge their value of their respective back-pointers to

reflect this change. Second, it wil. unless prohibited, go to each unit %vhich has this slot,
and rename that Slot. It will then ask if it Should update first cach funztwin, and then all
variables in the system; very time consuming processcs.

DefaultRenarnieUnit[NewNamne OldUnit] TypicalUnit: MfyToReniame.,leI
Thbis is used to rename a unit which represents a class to a new namne, and then performing
the necessary KB updates. It will, if permitted. scan through each unit loaded it. attempting
to perform this substitution. Otherwise, it will simply follow its various pointers, and
change their value of their respective back-pointer-, to reflect this change. It will then ask if
it should update first each function, and then A±l variables in the system; a very time
consuming processes.

DefaultSlotCacherf unit Slat Value Modification Why] - TypicalSloc:ToCache}
This simply stores value onl Unit:Slct. Using UA.PUTVALUE.

DefaultSubstValue[unit Slot value Mcdification why I -- {TvpicalSlot:To.ubsYa1ue}
This is the default way to substitute a new value "or an old one. within the existing valuc of
a tjnit:Slot. Like 0efaultPutValue, it wNil] call oefauieorePutValue before performing this
addition. (Here the value of single will be nontilL. and is used to indicate the nature of this
alteration.) Next Slon Actuasuostvaiue will be called on these argumnents-, ,rd if this succeeds,
DetaultAtterPutvaiue is called with these ariuments.
"extra" tell1s wvhether a singl!e value, or a list of values, are Inein charycei: and whether the
current value of Unit:S~ot should be recomputed (uising Siot:oein-) :f .5~ currently empty

DeiatiltVer-ffVVa1le Unit Slot Oliaiaue Modification why this Function S Lised to verify that
Moulfication rcpresents a legitimate modification to the %alue. CiaValue. now on unitisict. It
b1asically calls the function Stored on the VerlyAd Slot of Slot on the new '.aiUe. if this change
sa replacing the fuill entry, or uses Siot Vlerdyi-rr'ert. if we are s~minpv addire i new vaJue. If
either the new value, or CidVlaiue, wvas a value format. then it calls th Foreiu.''
(respectively Foreii:n.eeu)slot of the unit encoding that value format, on thiese
argument, including that jujst computed Siot:verayA/l (respective!y S:otiVer'yElement).

FindDefault[unit Slot other] Tis aiscends unit's ::crd~o,*~ asking each such ,ypical unit
for its Si vale. The first one it ':*,,.Ls is ret.ured.

Findlnverse[HL~eln KB sv .- This attempts to Find a slot which is the inverse of the Slot defined
by the high level definition. HLOefri. If no such slot exists, and makes sense (i.e. HL~efn is
invertable.) at asks if it Should cre,.ate such as slot. If the user permits this, it calls CreateSict
on that inverse, KB and sv. Otherwise it reurns that high level dcfinition.

FindSlOt[H4L~efn KB sv --* This attempts to 1find a slot whi--h is defined by the h,,gh level
definition, HLCefn. if found, it returns the -name of Lhat Slot.

FindValue! value Unit Slot others I -- This auxiliary fujnction is used to determine the real value of
Unit-Stof from the value physically stored there, assumed to be the first argument, value.

Form atted Val itep(value I - This returns nonNIt. if Value is a value formnat -- i.e. is of the formn
(*Do* ..).

GetAccessFn[f Unit Slot other default IUsed to get various slots associated with accessing/ updates
values. Re:urns the first of (Unit slot, Findcefauitt [Jnit Slot other). detaulti, which passes lsok(

val I.

HLDefnParsert IarseStr I -- Returns th.e functional specification derived from the High Level
Definition. ParseStr. This :S used by FuinctionSpec Deft'.

--- --

HLTypeParserj ParscSc~r Num Argnarne IThis returnis the body of a function which is
designed to tike an argument, and return nonfNIL if that argument is of thc type defined by
ParseStr. "Argname" is the name of that argument, wvhich that function should use. "Num"
is either FnForverfyingAlI, or FnForverutyingEiement, depending on whether this cecual ftinc:.ien
should take a single element of the type, or the full valuc.

IsEmpty[Value I]- Returns nonNIt. if value is one of RLL-1's substitute values used for NIL - e.g.
NcEntry or NoEntries.

IsOki Value] -Return NIL. if value is either empty or needs to be recomputed. Otherwise value is
returned.

lnitiafizeUriitf Unit Inneritance ParentSet I -This creates a new unit, named Unit, which is a
descendent of each member of te Parentset. by the inheritance. Inneiance. Its algorithm:
Apply :nheritance:GerP 7sib/eSlots to ParentSet. This produces a l1ist whose elements are of die
form (siotname location Nthere1 ... NhereN)' "*!ocation" is the namei of the unit Whose r-olnittaiize
slot should be called, on Unit and siotriane. to initialize that slot's value. Each wnere, is the
name of a prototype of this new. unit, inl which the slot. sic-name, is first defined. :nitializeUnit
then maps along tis list. calling !nitalizeSiot on siotnanle. ParentSet, location, and the list
(where, *.. hereN).

InitializeSlotf unit Siot Lzcatron Prctcs 7ni T 11'-'.is n'otS LUcation:?ai,!raiize on unit, Slot and P'otos
(Protos is that Wherc-List). This may use zhe global var-.ables: !iParentSet. '. m.ch :s the
parents of' tis unit, and winneritance, which :s Lie r.,e of irt~eintance uscd.

,LntersectDTf I~s L Each eie-ent or. DTist :saoa5' scecfictuor: this 'unc.::,Z returns a
new type sptcifictuon. wnich 3s the :ntersoc:cn)f ail or' toe-A i e.. c ;rnpiied
aczeptance =,it-ria is ,\\AD-,u,-c,.cr of each -nme7 :fhe input iiSt C; . ---,ta:Ies.

Ir~verr.HLDr --Zefn j Th-s rCnirns -he hihlevel o:-.'Lcn xn':cn :=rn tas te :nr'.Sre ~~t
from Lhe one LMM ed .y HL::eln. or !fL such a -:ncum .1s .one tned.

MapSious[Fn I -- Maps alon~g t.he slots of,-,nit, appling the f5inc:o.n. .ot each !ot 3P-- .ts value.

NM:0p'rit{ F, ks] Maps along all of the unit in -,-v of B K;o'' c ss -:ed -i -ts.
applying the jncuon,.Fr. to each. if -bs iS '41L. 2,)CiC' :Q)C'. Cl rZ .. n: A
companion func,;on. k-aounitso quotes :ts argurmcnts :.s -r';Ct. ct a
LAMBDA expression. the secontd argurnen r.,.OU~d : e 2 1(. 2Wh a e -4.:C ; S
bound to the name of the current u:-d-u This 7nap-nr --c-,-. ::ee'' e a.m.

MustCcmnputep[value I -- Retur,,ns rinn11-it f -alue.fCS
Recompute'.te or NIL. (vaiue ;s usually Irr j)nc itS!c C

Ne'.vlSaI[jewLnt 0arenl(unis -'.9 1 -- Th.s c-rzj:-2s a 2'w.:* -.

ParentUnits. It is enccrd Into t!he Knc%;cu:go- X-ic 2

-eK (NeK his creates and rniualIi:es a nc' .2 %,. .

Ne'.vSubCjass[Ne'.Unit ParenrU ..tS Ke This crea,,.s a ne% ;ni.r.-:. t as .. .

ParentUnits. It is ertered into the Knowfed2e Ba.se -6

NewTypEx[NewUnit ParentUnit KS This creates a nIow 1.n.L. N.cw.nt. z .'x-o

ParentUnit. It is entered ntco the Knowic~~ ae S a

9

NorRemovable[Unit Slot value ? ?] -This returns flonNIL if the Value of Una.;, must NOT be
removed -- i.e. if it 'is essential.

NU[NewUnit FromUnit KS - This creates a new unit, NewUnit. essentially identicul. to FromUnit (after
substituting NewUnit for each occurance of FromUnit). It is enitered into the Knowledge Base I
K8.

OveraflStartUp[-- This asks the user if he wishes to start the systemn; and does so if allowed.
It also doe various othcr clean-up jobs, appropriate for restarting a suspended version of
the RLL-1 system (i.e. after a SYSOUT)..

RemoveVirtualSlots[UnitList I -- This walks along thle unit in Unituist. removing their extraneous
virtual slots. (Note a slot is essential if it is included in the unit's .1 y Essen toI VirtuaISlois
list, or under a few other hacky conditions. See the tinction. NotRemovable.) There are
several Situations in which the user is prompted -- such as when an undefined slot
encountered, or when this unit lacked some essential s1Lt

StandardFinishUp[KB3 args I- {Typ icalStcarus: ;V'er IVritn gVet~tork,
This function is called when the knowledge base. K8, is written out, and closed. It First asks
if extraneous virtual slots should be rcmo,,,td. then. (if there are other currently open
knowledge bases.) if KB Should be disconnected. ind fnally, if this 'Knowledge base should
be diagnosed. These Inquiries can be avoided if (CAR (NTH args t)) ;s Y (indicating an
affirmative response) or N (negative).

StandardS tartUp[KS args I -- (TvpicaiStats: Vh',enO-enin~':Vetrork}
This function is called when thei knowledge base. KB, is openned. It irst does %arious
overhead taisks, such as Initializing and updlating variables. It then conbmi'crs adding Inverse
links to all the units of KB. to reconncct to the other knowledge bases currently in Core.
This time consuming process is performed if there is some active knowledge base curre-ntly
unconnected to KB. and the user perm its it. This inquiry can be avoided iF (CAP args) =Y (to
connect the links if necessary) or N (not to reconnect. period).

STARTU -- This actually begins RL-L-I. It handles all of the overhead, thecn lsoad.s in the desired
knowledge bases.

UnionDT[OTlist I --Each element of DTlist is a iatatype speciflcation: this function returns a new
type specification, which is the union of all of these -- i.e. whose implied acceptance citeria
is the OR-junction of each member of the inptut list of datatypes.

UpdateDepend[unit Slot NewValue Modification why] --ThiS is used to update the knowledge base,
to reflect the moolification made to Unit:Slot. If appropriate, it calls the functon stored on
Slot:KBUpdafes, on the above quintet of arguments.

lpdatelnverse[unit -Slot NewValue Modification why 3ddV delV] -This is u~sed to Update the
knuwled.c base, to refiect the Modification made to unit:slct. If slot has in inverse, the back
pointers are changed, as appropriate.

D.3: Convenience Functions

Advisor[- This advises several functions, for several reasons. See Section D.S.

EvcryFn[List Fn] -This is like MAPCAP, except it stops if applying Fn to any elcment returns NIL.

10

IntersectN[List, List 2 ...LiI] -- This is the V-arj form of the bu.na:.i T~E7

Mlaplnsert[List Fri - This is like SubSe[Fn, except it breaks (i.e. gives a ..arnina m-esszge) if any
element of Fn fails 'sOk, and it uses less LIST-space.

Map'Nergef Lst Fri. Thnis MERGES the results of applying Fn to each element Of List. (Note it
breaks (i.e. gives a warning message) if any such element fails IsCk

MapUnion[U3: Fn I- This UNIONS the results of applying Fni to each element Of List. (Note it
breaks (i.e. gives a warning message) if any such element fails Is~k.)

NlapU~iO[Ls -- This returns the first Is~k result of applyingl Fri to an element ct L~st.
(Note it breaks (i.e. gives a warning message) if any such element fails Is~k.)

MergeN[Listi Ls 2 .. LsN] -This is the N-ary form of the binary .EC.

ReadYesNo[LiteralString] -Prints Out LiteralString as prompt, then requests iniput. Returns T

user responds with Yes"- NIL otherswise.

SOS~ ev?]- For debU22ing, we maintainl a Z'ELEFLE recrting tie activity of each Ssstn.
Every uNLIM-GE7'VEEN-SOS ,iSer reSponses, te ?_inc:on scsAi. 'wng in PRC1.:PTC.ARFCMS.
calls on sos to close and reopen the current dr-moie fiie, raamed CrilceName. TP additn. if
this is the uNUM.2E-rNE/EN-SCs'Lh time this :uncton has teen. caled, :t asks the user if he
wishes to SYSCUT now.

If new? ;S n',01NIL. SOS al1so fIids a -ew. namec fOr t. tl"Lbbe ie.bfredcn all the

Setting7 uCKIoCSS :0 NIL turns off this dribblinz.

SomeFn[List F,] -. s is like sctve except it retu rns the value ofC r~lx) of thle fIrs:, element
xEust which rcturns nonNIL, rather than the sublist of t-st Afl:cn '-ezins with X.

SLUSCFn(List Fni -- This is like SUPESET, except it returns the list of valUes. Fn(x), far each
element xEL.S? which returns nonNIL, rather than :he sublist Of List zonitainin.g such (.

Tracer[P-01ame sik] -This is an aide to debuggling, especially userul when a recursive L-unctcrn
seems to be in an infinite descent. ft advises this function to maintain a stack, on the
variable stk (defraulted to (PACK' Fn~ame 'S7K) if omitted) of cutstandin.s arculnents passed
to this function.

UnionN[Listi List 2 ..' Lis*N] -This is the ;V-ary form of the binary UNION.

WVhatKB[Narre kb must might te-kb]-- This is used to find the knovladge base in wihto enter
t.1ei new thing, named ,iame". If kb is supplied, and is a MeMb er Of the UF NETVCPKS, that
value is returncd. Otherwise, if there is only erne knowledzc lbase ocnn that value will be
returned. (If must is NIL, indicitiong this necv thing need n'ot be affliiated, the user is first
asked if this is approoriate. Otherwise, he is just informed that this affiliation has
happened.) If nonNIL, the value Of might-be-kb is suggested to the user. %Nho can approve it
by responding "Y".

WhichFnList[FriName] -This returns the name of the list on which the function. FiNamne. is
located. (Note the utility functions have been split up into several logically 4istinct Classes,
each with its own Hlit Also most knowledge bases come with th~eir own such list of
functions.)

117

WhiolsUser[Val I-This attempts to find (and return) the unit tinder AnyUzer .% hch rcprcscnits
Val (which defaults to the current user). If none is found, and if allow~ed, it will create a
new unit for this user, and return that value.

FA4: Advised Functions

Except where otherwise not every bit of ibis advice is set in Advisor, and is pennanentl.

LOGOUT is told to close tie dribble File, and cheeks if the current state of this LISP session
should be released -- i.e. if any writes onto a KB have been performed since the last SYSOUT.

As each function is defined, the user is asked if in which file he wishes to Store this function. 'his K3
m'anagement is done by the advise to \PurO. Puro. \MOV0 and MOVD. LOAD. ADVISE, PEADVISE are all told
to tell \PUTD's advice not to try to save the temporary functions they generate.

EDITE has been advised to do two things: First, it knows not to bother \PUTD's advise when a
function's source code is read in. Secondly, it warns the user if he tries to use EDITP to edit a unit
that his changes not only might not be saved, but he might really foul things up as well.

The only other function RLL-I ever advises in UP-PuTUNIT. This is done by C~eanws, and is
usually remo"'d the next time UP-PUTUNIr is called. This advise tells te user some unit is about to
written onto the external '.PAGE file: and permits him to enter readonly mode at this point.

F.5: Global Variables

PRONIPTCHARFORNIS has been changed, by adding (SCS-ME). This fun.ction, helps maintain
rte dibbla file.

AFTERSYSOUTFORMS, BEFORESYSOUTFORMS have been added to. so tha. right
things happen when the user does a SYSOI4T (i.e. 'PAGE files gV, saved, ..

BeenStarted is T if the RLL-1 system has been started already, otherwise NIL.

DribbleName, LiAIlDribbleFiles are used by SOS, to record the current, and all prev~ious
dribble ilies used, respectively. uAlIIrbbleFiles is printed out by the1 advice to LOGOUTr.

uINUNI-BETWEEN-SOS stores a value SOS-ME uses to decide when it is time to call SOS.
C&.T'cnlty set to 25. (SOs also uses it to decide when to suggest the user SYSOIJT.)

uAllUsers stores all users who have used this sysout, and written out any changed ua'its.

uSYSOUTNAMIE is the name of the last SYSOOT performed; or RLL-1.EXE if -lone have been
done.

RenamedUnits, DeletedUnits store lists of units which have been recnamedl (as dotted pairs) or
deleted, respectively.

WORRIES stores ext describing past events which might later lead to trOili -- i.e. they Were
not serious enough to break on, but they still should not have happened.

KernelKB is the name of the starting, "top most" knowledge base -- currently, of course, RLL-1.

uValue, ulContext are used when IMPURE is one of the values listed by others, when passed to
DefaultGetValue. They are set to the value and unit on whi;ch this value was found,
respectively. <uContext may be meaningless now.)

DefaultGetValueOptions is used by DlefaultGetVafue as the default value for others, when that
argument is NIL.

6-1

G. Appendix - Sample Session

This appendix shows a session the author had with the current RLL- 1 system. This Is
designed to provide a flavor of RLL-I's capabilities, as well as describe the formats for its
various commands. Comments are shown enclosed in braces, "Ns.

Table of Contents

SubSection Page Topic

1. 2 Starting the system
2. 4 What was created?
3. 5 Looking around
4. 5 Creating a new class
5. a Creating a new typical example, for a class
6. 8 Slot verification by EDITU
7. 9 Examining unit which represent Formats
8. 10 Adding on a new person
9. 10 Creating a new entity - HisMother
10. 11 How are new units created?
11. 11 Hack to IJSP's evaluator
12. 12 Creating a new datatype - GenderType
13. 12 Engendering our visitor
14. 13 Indicating that Mothers are female
15. 15 Add another person
76. 15 Can a male be a mother?
17. 16 Now make Husbands male:
18. 18 To give HisMother a Husband
19. 17 Create a new type of slot - Father
20. 17 There is a unit for Composition:
21. 19 Examples of SlotCombiners
22. 20 What else can we say about Father?
23. 20 Far too quiet:
24. 20 How do accessing functions really work?
25. 21 The FindDefault function:
26. 21 Strategy:
27. 22 What gets done when? - system dependent fns
28. 23 Creating a new function
29. 24 New class of types of slots - ChattySlots
30. 25 Create a new typical member of AnyChattySlot
31. 25 Conclusion

G-2

<<<1. Starting the system))
[I adviced USERNAME to return "NewUserfl for this.]

@(CSD.IA>DEMO.EXE

Shall I start the RLL system now? yes

*" Am opening Dribble file: TRACE.Aug18 [18-Aug-80 13:38:45]

Reading In RLL.STATUS now.

Opening knowledge base (CSD.RLL)RLL.K8.1 2

Opening paging file (CSD.IA)RLL.PAGE. 1

Loading unit RLL.UNITINDEX

Loading unit RLL.STATUS

Last written by (CSD.GREINER 18-Aug-80 22:18:15)

((Loading unit KBsFNS
Loading unit Allisas
Loading unit ToGetValue
Loading unit OrderedPrototypes
Loading unit Defn
Loading unit Prototypes
Loading unit MySlotsNow~rdered
Loading unit TypicalPrimSiot
Loading unit TypicalSlot
Loading unit ReforeGet Value
Loading unit AtterGetVaiue
Loading unit KBsVARS
Loading unit KesConnectedTo))

This kb, RLL Is already connected to all of (RILL).

Do you wish to read In any Knowledge Bases? Yes

((Loading unit AllExamples
Loading unit AnyUser
Loading unit UserNames
Loading unit RussGrelner
Loading unit DougLenat
Loading unit LarryHines
Loading unit AndyFreeman))

I don't know who you are!

Shall I create a unit to store Information about you? yes

Is NewUser an appropriate name? no

What name would you prefer? Visitor

((Loading unit GetPossibleSiotsFn
Loading unit lExampies
Loading unit LispFn
Loading unit TyplcalVirtualSlot

Loading unit PossileSiOtsOflExamp10s

Loading unit StoredAtist
Loading unit GenIsModels
Loading unit SuperClass1
Loading unit TypicalExample
Loading unit Anything
Loading unit AnyCT&U
Loading unit NewPossibie Slots
Loading unit TypIcolCT&U
Loading unit MyCreator
Loading unit MyTimeOf Creation
Loading unit MyToKIliMe
Loading unit TypicaiAccessSiot
Loading unit MyToRenameMe
Loading unit MyEssentIaiVirtuaiSlots
Loading unit MySensibleSIot3
Loading unit MyCreatedAs
Loading unit MySlots
Loading unit TypicalThing
Loading unit Specializations
Loading unit TypicaiUnitFn
Loading unit TypicaiStorabieFn
Loading unit TypicalFunction
Loading unit TypicalProces
Loading unit Isa
Loading unit AiGenis
Loading unit AllSpecs
Loading unit Characteristics
Loading unit Descr
Loading unit TypicalUser
Loading unit InformaiName
Loading unit UsualK13s
Loading unit Writing~ptions
Loading unit Openning~ptions
Loading unit OrderForToinit
Loading unit Typi ca iSSELF$ Slot
Loading unit ToAddVaiue
Loading unit BeforePutVaiue
Loading unit VerifyElement
Loading unit Format
Loading unit FnForPutting
Loading unit FSet
Loading unit SuperTypEx t

Loading unit TypicalExampleOt
Loading unit SuperClass
Loading unit FnForAdding
Loading unit ToCache
Loading unit ToPutValue
Loading unit AfterPutVaiue
Loading unit Inverse
Loading unit KBUpdates
Loading unit Examples
Loading unit AliTypicaExaMPleOts))

I - RESOL
2 -- GENLINFO
3 -- BIOLOGY
4 -- SETS
5--MATH
0 - NUMBER
7 -- H0881T

G-4

8 -- HEURS
9 -- OLD
10O-- EURiSKO

Enter the numbers of the ones YOU Wish to Use: 2

((Loading unit FunctionSpec
Loading unit HighievelDefn
Loading unit DomainType
Loading unit FLst))

Opening knowledge base (CSO.RLL>GENLINFO.KB.4

Opening paging tile (CSD.IA>GENLINFO.PAGE. 1

((Loading unit GENLINFO.UNITINDEX
Loading unit GENLINFO.STATUS))

Last written by (CSD.HINES 31 -Jul-80 15:38.24)

Network RLL already open.

This kb, GENLINFO Is already connected to all of (GENLINFO RLL).

K~Saloaded.

((CSD.IA>DEMO.EXE.3 . <LISP LISP.EXE. 133)

<<<< 2. What was created? >>>>

(Turn offI those obnoxious Loading, ... messages)

99-(SETO UP.TRACEFILE NIL)
(UP.TRACEFILE reset)
NIL

(Now look at what was just created)

1 OO-EDITU(Visitor)
edit

98*pp
(Note this is a property list, of the form (slot I value l 1 value2 ...)

(is& (AnyUser)
UserNames ("Newlserll)
AlIIsas (AnyCT&U Anything AnyUser)
Prototypes (TypicalUser TypicalCT&U TypicalThing)
MySlotsNow~rdered (OrderedPrototypes)

(NOTE: Slots beginning with "My" are syntactic.)
UsualKBs (ALL)
MyCreatedAs *(lExamples (AnyUser))
1MyTImeOfCreation "18-Aug-80 13:40:23"
MyCreator "NewUser"
OpenningOptions NoEntries
MySensibieSlots (Descr Characteristics Prototypes AllSpecs AilGenls A111sas 13a

OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSlots MySiotsNow~rdered MyEssentlaiVirtualSlot
MyToRenameMe MyToKillMe MyTimeOfCreation MYCreator UserNames
Openning~ptions Writing~ptions Usu&lKB3 InformaiName))

G-5

Q8*ok
Nothing changed.
Visitor

<'<<< 3. LooAing around~ >>>>

(Let's see the top level units:)

1 ..Ol(Anything S 2)

Note the trace flag has been turned oft1.

Anything
AnyAT&U
AnyAbstractThing
AnyCT&U
AnyConcreteThing
AnyUnit

!DONE!

(This showed the subclasses ot Anything, down (a total of) two levels
The ... &U units are hacks, to store both the unit and its meta-unit
in the same physical unit.

More interesting 13:)

2..Dl(AnyCT&U S 2)

Note the trace flag has been turned off.

AnyCT&U
AnyClassOf~bjects
Any~aatype
AnyDecomposabieObject
AnyFormat
Anyinheritance
AnylntensionalObject
AnyOverhead
AnyProcess
AnyUnit
AnyUser

! D O E!< < < < 4 . C re a tin g a new c lass > > > >

(Let us create a new unit - which refers to people:)
4 .4ewSpec(AnyPerson)
I3 a lSubClass of: AnyCT&U
Please enter the Knowledge Base In which to store AnyPerson: GENLINFO

Is the format of (LAMBDA (units sI? 0th?) (MapUnion (isOk units)
(FUNCTION (LAMBDA (x) (GetValue x (QUOTE Prototypes) (AddOnCharacter
oth? (QUOTE VE RYSAFE SLOT))))) a list?
yes

(Here, RILL 1s asking about the Format of the expression (LAMBDA ...)

6-8

This was because It didn't know about the function *MapUnion".
It will, later in RLL's development.)

You are about to write on an external file.

Do you went to enter ReadOnly mode? no

(Before the first write. RLL gives the user a chance to leave
the systems unmodified. Here, we told RLL to go ahead.)

Initialized AnyPerson
edit

992p

(isa (AnyClassOfObjects)
AIlsas (AnyCT&U Anything AnyClassOfObjects)
Prototypes (TypicalClass TypicaiCT&U TypicalThing)
MySlotsNowOrdered (OrderedPrototypes) -

MyCreatedAs (ISubCIass &)
MyTimeOfCreation "18-Aug-80 13:50:28"
MyCreator "NewUser"
TotalSoFar 0
SuperClass (AnyCT&U)
MySensbleSIots (Descr Characteristics Prototypes AIISpecs AIIGenis

AIllisas Isa OrderedPrototypes Specializations MySIots MyCreatedAs
MySensibleSlots MySlotsNowOrdered MyEssentialVirtualSiots
MyToRenameMe MyToKiliMe MyTimeOfCreation MyCreator TotalSoFar --))

{ t These are slots which are well defined for this unit.)

2, Am re-opening Dribble file: TRACE.Aug18 [18-Aug-80 13:53:01]

t A dribble file records the session. (You're looking at It now.]
This class unit looks)

1 00ok
Verifying slots
AnyPerson

<<<< 5. Creating a new typical example, for a class >)>

(Now we'll create a unit which hold facts typically true of any person.
(That Is, default values; as well as a list of new slots to be Inherited
by every new person.])

5-NewTypEx]
Name: TypicalPerson
Is a ITypEx of: AnyPerson
Please enter the Knowledge Base In which to store TypicalPerson: GENLINFO

Is the format of (LAMBDA (units sl? oth?) (MapUnlon (IsOk units) (FUNCTION (LAMBDA
(uNITcomp sLOTcomp oTHERcomp) (OR (MapUnion (GetValue uNITcomp (QUOTE GenisModels)
(AddOnCharacter oTHERcomp (QUOTE VERYSAFESLOT)))
(LAMBDA (x) (GetValue x (QUOTE Prototypes) (AddOnCharacter oTHERcomp
(QUOTE VERYSAFESLOT)))))) NoEntries)))))
a list?
yes

(No, RLL still doesn't know about MapUnlon.)
Shall I create a slot with the high level defn:
(Composition TypicalExample SubClass")? no

Z J"-

G-7

(To update Inverse links, It has to "invert" each relevant slot.
For this it uses that slot's high level definition.., which goes to

* the slot combiners Involved,..
Above It was Inverting GenisModels, whose HlghLevel~efn was
(Composition SuperClass'i TyplcalExampie~fJ

RILL was asking whether to Preserve this definition as or slot, or not.
I said NO.)

Iitialized TypicalPerson"
edit

u'p

(I3a (AnyArchetype)
TypicalExampleOf AnyPerson
NewPossibieSlots NoEntries
AllIsas (AnyIntensionalObject AnyCT&U Anything AnyAT&U AnyArchetype)

"4' Prototypes (TypicaiTypicalEx TypicalCT&U TypicalAT&U TypicalThing)
My~iotsNow~rdered (OrderedPrototypes)
MyCreatedAs (ITypEx &)
MyTlmeOf Creation, "18-Aug-80 13:59:43"
MyCreator "Newl.ser"l
MySensibleSiots (Oescr Characteristics Prototypes AllSpecs

AlIGenis Allisas Isa OrderedPrototypes Specializations MySlOts
MyCreatedAs MySensibleSiots MySlotsNowordered
MyEssentiaiVirtualilots MyToRenameMe MyToKIlIMe MyTimeOfCreatlon
MyCreator SubTypEx4 SuperTypExl SubTypEx SuperTypEx
TypicalExampleOf NewPOSsibieSlots PossibleSlots))

(t These slots are pertanent to all prototypes, such as this TypicalPerson.
RLL determined these using from the prototypical prototype,
TypicalTypicalEx.)

2*5 up p
.NewPossibleSlots NoEntries

{t Its Value lists the new slots, which all people will have.)

(Currently it is empty.
(Note we use "NoEntries" to indicate a list we know I3 empty,
leaving NIL to mean a value we simply don't know.])

3*(2 (Mother Husband))

(Now new examples of AnyPerson will have these two slots.)
4*bk (b Mother NoEntry Husband NoEntr)

sop

..Mother NoEn try Husband NoEntry NewPossibleS;0ts (Mother Husband)..

((NoEntr', Is like NoEntries In purpose. It, however,
refers to the absense of a single entry.]

Here, it Is used to Indicate that TypicalPerson cannot
provide any sort of default information about a new unit's relatives.

It also causes RLL to consi1der creating a Mother (resp. Husband)
type Of slot. This Is done In EDITU.)

Glok

G-8

<<<<(6. Slot verification by EDITU >>>>

Verifying slots
Your attempted slot name Mother is NOT even a unit. Should It be? yes

(This will create a new unit, to house facts about the uMotherN slot.)
What should the isa link for this Mother link be?

(It will be created as a new Primitive slot - hence the "P" response above.)

Expecting one of:
(P VA'x)

What should the 1sa link for this Mother link be? P
Please enter the Knowledge Base In which to store Mother: GENLINFO
2 Initialized Mother

edit
8'pp
(Isa (PrimSlot)
AIIsas (AnySlot AnyUnitListFn AnyFunction AnyCT&U Anything AnyProcess

AnyStorabieFn AnyUnitFunction PrimSlot)
Prototypes (TypicalPrimSlot TypicalSlot TypicaiUnitFn TyplcalStorableFn

TypicalFunction TypicalProcess TypicalCT&U TypicalThing)
MySlotsNowOrdered (OrderedPrototypes)
MyCreatedAs (lExamples (PrimSlot))
MyTimeOf Creation "18-Aug-80 14:10:56"
MyCreator "NewUser"
Format (*Do* FOneOt FSingleton FSet F'Lst FOrderedSet FBag)

(We'll see soon this special value, t, will be useful.)
Datatype (NonNiLType)
MySensableSlots (Descr Characteristics Prototypes AllSpecs AilGenis Ailsas 13a

OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSlots MySiotsNow~rdered MyEssentialVirtualSlots
MyToRenameMe MyToKiliMe MyTimeOf Creation MyCreator WhatToProcess
HowToProcess LispFn lUseDefnOf lUseCVOf DefnUsedBy CVUsedBy
FunctionCharacter RangeType DomainType PreConditions Range Domain
Definition FunctionSpec Format Datatype DataRange Defn
HighLevelDefn lsBuiltFrom UsingFunctions SlotsBuiltFrom
UsingFunctionals UnitsBuiltFrom Slot3UsedinBuilding ToLookUp
ToCache LispFnForS toredFn StoredALis t ToConfirmValue
UslngSlotCombiners ToGetValue HandDoneSBF AIISBF VerifyElement
VerifyAll ToSubstValue ToDeleteValue ToAddValue MakesSenseFor
SubSlot' SuperSlot' SubSlot SuperSlot Tolnitlalize ToPutValue
OrderForTolnit KBUpdates Inverse IsEssentlalFor))

81f Datatype
.gap

iDatatype (NonNILType)..
9(2 (UnitType) DataRange (2P AnyPerson)

(This "UnitType"l indicates the value of U:Mother will be a unit;
and the DataRange restricts that, to say that unit will descend
from AnyPerson)

10', f Format
12'2 p
(1Do' FOneOf FSingleton FSet FLIst FOrderedSet FBag)

(IE The format Must be one of these.
We'll see soon that each of these formats Is really a unit.)

13*xtr 3
(This means U:Mother will be filled with a single entry.
That's all I want to say about Mothers, at this time.)

1 4'ok
Verifying slots

(We now pop back to editing TypicalPerson, and find another non-slot:)

Your attempted slot name Husband is NOr even a unit. Should It be? yes
What should the Isa link for this Husband link be? P
Please enter the Knowledge Base in which to store Husband: GENLINFO

nInitialized Husbandn
edit

(To fix Husband's range specification:)
151f Datatype
1622 p
(NonNILType)
1 72: (UnitType) DataRange (*P AnyPerscn]
1 8ok
Verifying slots
What should the value of Husband:Format be?

Expecting one of:
(FSlngieton FSet FL1st FOrderedSet FBag)

What should the value of Husband:Format be? FSlngleton
TypicalPerson

(Nate it asked for Husband's format. as I hadn't specified It; and RLL
figured it would be needed eventually.)

<<<< 7. Examaining unit which represent Formnats >>>>
(Note first that there are two subclasses of formats:)

30-SubCzass(AnyFormat]
(AnySiotFormat AnyValueFormat)

(The interesting one is)
31 -Examples(AnySlotformatj
(FSingieton FList FSet FOrderedSet FBag FUstN)

(Each of these is a bonafide unit:)
32-EDITU(FSet]
edit
66*p
(isa (AnySiotFormat)
FnForVerifyingAll (LAMBDA & &)
FnForVerifyingEiement (LAMBDA &&
FormatCharacter (MayBeEmpty NonOrdered NoDuplicated ArbitraryNumberOf Entries)
FnForAdding (LAMBDA & &)
FnForDeleting (LAMBDA & & &
FnForSubstituting (LAMBDA & & &
FnForPutting (LAMBDA & &) --)

(The value for each of the FnFor--- is a function, which Is used by some
accessing function (eg GetValue) to view or alter a vaiue.)

662ok
Nothing changed.
FSet

3S -(MAPCAR (Examples 'AnySiotForna t) 'FormatCharacterJ

((MayBeEmpty SingleEntry)
(MayBeEmp ty Oraered Duplicates ArbitraryNumberOfEntries)
(MayBeEmpty NonOrdered NoDuplica ted ArbitraryNumberOt Entries)
(MayBeEmpty Ordered No~uplicated ArbitraryNumberOfEntrie3)
(MayBeEmpty NonOrdered Duplicates ArbitraryNumberOfEntrie3)
(MayBeEmpty Ordered Duplicates ExactNumberOfEntri9s))

G-10

<<<< 8. Adding ona nowperson >>>>

(Back to our main plot:
Lot's make Visitor think of itself as a person.)

6..EDITU(Visitor]
edit
1 gap
(isa (AnyUser) UserNames ("NewUser") ...)

1 92 (n AnyPerson)

2110 p

(isa (AnyUser AnyPerson) UserNames ("NewUser") ...)

220ok
Verifying slots
Visitor

(Note I could have made AnyUser a subclass of AnyPerson,
but who knows who (or what) will eventually be using RLL...)

7-EDITU]
aVisitor
edit

(Let's give our visitor a mother:)

231(n Mother HisMother]
((Note this should NOT work, as we have yet to define "HlsMother"...))

281ok
Verifying slots

Trouble doing actual Put (Visitor Mother HisMother)
Shall I go on, break, or edit this value? Go

Visitor

<<<< 9. Creating a new entity - H1isMot her >>>>
(So let's create that unit.)

8-Newlsa)
Name: HisMother
1s a lExamples of: AnyPerson
Please enter the Knowledge Base in which to store HisMother: GENLINFO

aInitialized HisMother
edit
292pp

(isa (AnyPerson)
Allisas (AnyCT&U Anything AnyPerson)
Prototypes (TypicalPerson TypicalCT&U TypicalThing)
MySlotsNowOrdered (OrderedPrototypes)
MyCreatedAs (lExamples (AnyPerson))
MyTimeOf Creation 1 8-Aug-80 14:27:04"
MyCreator "NewUser"
MySensibleSlots (Descr Characteristics Prototypes AllSpecs AliGenIs Allsas 1sa

OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSlots MySlots~owOrderod MyEssentlalVlrtualSlots
MyloRenameMe MyToKilIMe MyTimeOf Creation MyCreator Husband Mother))

29fok
Verifying slots

His~other

<<<10. How are new units created?).)

37-PP(Newlsal
loading from <CSO.RLL>UTIL.. 7

(Newisa
[LAMBDA (Son Parent whichla) 24COMMENT42 22COMMENTIO

(NewUnit Son Parent (QUOTE IExamples) whichKB T])
(Newlsa)

(So what Is "lEx4MPles)

38-EDITU(lExamples]
edit
890P
0348 (Anylnheritarlce)
Deact (Here is a the Inheritance fo creating something Which 13 an examples

of some class.)
UseToGetSots Genis.Models
GetPossibleSlotsFn PossibieS'otsC,'!Examgles)

(There may eventually be other things stored here, once we figure out
what we mean when we say "Inheritance".)

6 g ok
Nothing cnianged.
lExamples

(Are there other inhe~ritances?)
39-AllEXaMpieS(Anyinheritoi'cel
(ITypEx ISubClass iExample!)

(What is that PossiIbleS~otsCf:Examp~es?)
39-EDIT.U(Poss~bieSotsCflExamples'
edit
700p
(Used8yinheritance lExampies
1sa (AnySiotGetter)
Format FOrderedSet
HighLeveloefn (PutlnCrder (Cz~mmonXProd NewPossibleSloi:3

(AppiyToE acn MapUnion GenIsModels)
Wherelnitfn)

OrderForroinit CAR NML

(Wow - Icck at that HighLevelDefni!)
720ok
Nothing changjed.
Possible S~ts~f Exs a res

<<<< 1. Hack to LI1SP's evaluator)>>>
(To see our collection of peopie:)

9-E xarnoles(AnyPersori)
(HisMother Visitor)

(I) That is, as U;~sa was fliled with AniyPerscn,
U was added to AnyPerson:Examples

2) Note there is no function named "Examples".
That call worked because we've hacked u~p LISP's evaluator to try
(GetValue U IS) if S(U) falls)

G-12

I O.GETD(Examples]
NIL

(It is, of course, a unit:)
11 -Unitp(Examples]
RLL

(The same is true for AllExamples, shown last page.)

<<<< 12. Creating a new datatype - GenderType >)>>

(Lets now create a new datatype, to help us distinguish
Males from Females
First, what are the current datatypes?)

11 -Examples(Anyatatype)
(KBType TVType NonNILType GrammarType NumberType BooleanType UnrestrictedType

FunctionType SlotType IntegerType UnitType StringType)

(We'll create a copy of BooleanType, then modify that copy,
using the function)

12-NU(GenderType)
Copy from: BooleanType
Please enter the Knowledge Base in which to store GenderType: GENLINFO
edit

30pp
(Isa (AnyOatatype)
VerifyType [LAMBDA (x)

(FMEMB x (QUOTE (T F]
GenerateAll [LAMBDA NIL (QUOTE (T Fj
IsTypeOf NoEntries
SuperDT (NonNILType)
MyCreatedAs (lExamples (AnyOatatype)))

(Apparently the function stored In VerifyType returns nonNIL
if its argument qualifies as a member of this datatype.
(We could have found this out by looking on the "VerifyType" unit...)
and GenerateAll returns a list of these acceptable values.)

301(R (T F) (Male Female Neuter Hermaphroditic]

34*PP
(Isa (AnyDatatype)
VerifyType [LAMBDA (x)

(FMEMB x (QUOTE (Male Female Neuter Hermaphroditic)
GenerateAll [LAMBDA NIL (QUOTE (Male Female Neuter Hermaphroditic]
IsTypeOf NoEntries

(Everything else locks right, so)
429ok
Verifying slots
GenderType

(Note another way of doing th!s would be to create a new class, AnyGender
and have a unit for each of these - Male, Female,
This was how Formats, Datatypes, Inheritances,
were all handled.

Let's now have genders, all around)

(<(13. Engendering our visitor >>>>

13-EDITU(Visitor)

__.-

G-13

edit
431(-1 Gender Male]

(Showing my prejudices, I'll assume this visitor is masculine.
Note there Is now no unit named Gender. RLL will notice that also.)

4 4 2p
(Gender Male isa (Anyt~ser AnyPerson) UserNames ("Newl.er").)

441ok
Verifying slots

Your attempted slot name Gender is NOT even a unit. Should It be? yes
What should the Isa link for this Gender link be? P
Please enter the Knowledge Base in which to store Gender: GENLINFO

* Initialized Gender'

edit
4511p
(Isa (PrimSlot) Alisas (AnySlot AnyUnitListFn AnyFunction AnyCT&U Anything
AnyProcess AnyStorableFn AnyUnitFunction PrimSlot) Prototypes (TypicalPrims"ot
TypicalSlot TypicalUnitFn Typical Stora bleFn TypicoiFunction TypicalProcess
TypicalCT&U TypicalThing) MySlotsNow~rdered (OrderedPrototypes) MyCreatedAs
IlExamples &) MyTimeOf Creation "1,8-Aug-80 14:43:27" MyCreator "NewUsern Format
"Do,* FOneOf FSingleton FSet F~ist FOrderedSet F~ag) Datatype (NonNiLType)

(Lets fix up the value of Oatatype, uz~ng our newly created one:)
451t15 up p
.Datatype (NcnNILType) MySersibleSlots (Descr CharacteristIcs..

47*(2 (GenderType)

(I'll also indicate that only people can have genders, usinq "ne
MakesSenseFor slot:)

49*(n MakesSenseFor (TypicalPerson]
501ok
Verifying slots

What should the value of Gender:Format be? FSingleton
Visitor

(As Inverse(MakesSenseFor) is NewPossibleS~ots,
Let's now look at the NewPossibleSlots of TypicalPerson)

46-NewPossibeSots(TypicalPerson]
(Gender Mother Husband).

<<<< 14. Indicating that Mothers are (emrale >>>>

(Let's now specify that all Mothers are female:
First, how to say that range specification,
took at the UnitType datatype.)

47-EDITU(Unitrype)
edit
932p

(Isa (AnyDatatype)
VerifyType Unitp
IsTypeOf (Husband KBsConnectedlo Is& New~ossibleSlOts ...)

G- 14

Range Interpreter UnitRange
SuperOT (NonNJILType)
SubDT (SlotTypo)
MyCreatedAs (lExamples &
Allisas (AnyCT&U Anything AnyDatatype))

931f Rangeinterpreter
9 4 *p

Range Interpreter UiaitRange..

(The value of DT:Rangelnterproter Is a function, which uses a 31ot,3
DataRange value to compose a function. That function 1s used to
restrict the values acceptable for that slot.)

9402 p
UnitRange

(Lets look at this functions)
95'ef
loading from (CSD.RLL>RLL..6
prop
edit
95*p

(LAMBDA (rangespec valname) NaCOMMENTRR (AND & &))

(Details omitted for brevity.)
95"Ok
not changed, so not unsaved
UnitRange

96*ok
Nothing changed.
UnitType

(What Is the current range type of Mother?)
48-RengeType(Mother]
(FSlngleton (UnitType (*P AnyPerson)]

(That Is, the value of U:Mother Is a single value, which Is a unit,
which descends from AnyPerson.
Now to add that specification to Mother:)

49..EDITU(Motherl
edit

97*f DataRange
g 812 p
(2P AnyPerson)
99'tmbd (L-AND It(SlotVal Gender Female)
1 001P
(L-AND (OP AnyPerson) (SlotVaI Gender Female))

(By the way, there is a unit for this L-AND)
I100' EU
edit

1 00 *p

(Isa1 (AnyLogqcalop)

G-15

MyCreator "CS0.GREINER"
MyTimeOf Creation ,1 5-Apr-80 1 7:43:55"
MyCreatedAs (IlExamples &)
Defn (LAMIBDA &&)

1 00'ok
Nothing changed.
L-AND

1 'ok
Verifying slots
Mother

(Now to show that Mother's RangeType has changed;)
61 -RangeType(Matherj

[FSlngieton (UnitType CL-AND (2P AnyPerson)
(SlotVai Gender Female)

<<<< 15. Ae~d another person >>>>

(Add another person to cur KB)

52-Newisa(Fred AnyPerson GENLINFO]
-1Initialized Fred it

edit

2up

(Isa (AnyPerson) Allsas (AnyCT&U Anything AnyPerson) Prototypes (TypicalPerson
TypicaiC T&U Typicailming) MySlotsflJowOrdered (OrderedPrototypes) MyCreatedA3
IlExamples &) MyTimeOf Creation "118-Aug-60 15:03:25" MyCreator "NewUser"
MySensible~lots (Descr Characteristics Prototypes AllSpecs AlIGerils Allisas Isa
Crd ere dProto types Specializations MySiots MyCreatedAs MySensibieSict3
MySlotsNow~rdered MyEssentialVirtualSlots MyTo~lenameMe MyTolKIllMe
MyTimeOfCreation MyCreator Husband -)

(Lets engender Fred)
20(n Gender Male]
ok
Verifying slots
Fred

(As a side comment, creating Fred took much less time than creating
HisMother, as much of the information needed to create a new example
AnyPerson was cached away during this first computation.

This was true In general - the first time a new unit is created using
inheritance 1, from the list of parents, P, it will take a long time.
Subsecuent children of these parents will created and Initialized much
faster.)

<<<< 18. Can a male be a mother? >>>

(Lets see it we're allowed to make Fred a mother,
(Note PutValue returns NIL only it some error had been encountered.])

53-PujtValue(Fred Mother Visitor]
NIL

(That Is, no vaiue was put -- L~e.)

C8 *-UA- GETVALJE (Fred Mother]
NIL

([Note UA-GETVALUE Is like GETPROP - no smarts]
We now show PutValue can do something:
First. let's make HisMother Female:)

6g-PutValue(HisMother Gender Female]
Female

70...PutValue(Fred Mother HIsMother]
HIsMother

(Proof:)
71 -UA-GETVALUE(Fred Mother)
HIsMother

<<,(17. Now make Husbands male:)>

73-EDITU(Husband)
edit

1 91f DataRange

2011P

.DataRange ('QP AnyPerson)..

20R2 MBO (L-ANO (SlotVal Gender Miale)

21 11 p

.(L-ANO (1P AnyPerson) (SlotVal Gender Male))..

22*ok

Verifying slots
Husband

(Just to check)

75..AangeType(Husband)
(FSlngleton (UnitType (L-AND ('1P AnyPerson)

(SlotVal Gender Male]

<<<(78. To give H/sMother a Husband))

78-Newisa)
Name: HerHusband
13 a IlExamples of: AnyPerson
Please enter the Knowledge Base in which to store HerHusband: GENLINFO

1Initialized HerHusband'

edit
23'pp
(1sa (AnyPerson)
Allisas (AnyCT&U Anything AnyPerson)
Prototypes (TypicalPerson TypicaCT&U TypicalThing)
MySlotsNowOrdefed (OrderedPrototypes)

G- 17

MyCreatedAs (IlExample3 (AnyPerson))
MyTimeOf Creation 16-Aug-80 15:15.50"
MyCreator "NewUser"
MySensible~lots (Descr Characteristics Prototypes AllSpeCs AliGenis Ailsas isa

OrderedProto types Specializations MySlots MyCrea tedAs
MySensibleSlots MySlotsNow~rdered MyEssentialVlrtualSlots
MyToRenameMe MyToKillive MyTimeOf Creation MyCreator Husband Mother
Gender))

(Note Gender Is an MySensibleSlots now
(at course it wasn't before It existed.])

232(n Gender Male]
2431ok

Verifying slats
HerHusband

77-PutValue(HisMother Husband HerHusband)
HerHusband

(Now HlsMother:Husband Is HerHusband, as planned.)

<<<< 19 Create a new type of slot - Father >>>>

78 -SMARTAR GUJST(Crea t eSlot)
(hid kb extra-pairs name)

(To define Father)
78-(CreateSiot '(Composition Husband Mother) 'GENLINFO NIL 'Father]
Father

(To see If it worked:)
7g=Father(Fred]
HerHusband

(Lets see what this unit really looks like)

88..EOITU(Father3
edit
362F Oefn
3712 pp

[LAMBDA (uNlTcomp sL0Tcamp oTHERcomp)
(OR (GetValue (GetValue uNlTcamp (QUOTE Mother)

(AddOnCheracter oTHERcomp (QUOTE VERYSAFESLOT)))
(QUOTE Husband)
(AddOnCharacter oTHERcomp (QUOTE VERYSAFESLOT)))

NoEntry)
38*ok
Nothing changed.
Father

<<<< 20. There Is a unit for Composition: >>>>

26 '.EDITU(Compositlon]
edit
64*pp
(1sa (AnySlotCombiner)
Descr (Compose 81 of S2 of ... of Sn the unit)

G-18

FnForCaching NoEntry
FnForUpdating [LAMBDA (attectedslt fuIIHLD changed31t argnaMes hold)

(OR CMAPCONC (REVERSE (CDR fuIIHLD))
(FUNCTION (LAMBDA (sit morework)

(PROGi (COND
((LISTP slt)

(COND
[hold (AND (SETO morework

(UpdateASUlB
slt changedslt
(CONS (QUOTE x)

(COR argnames))
affected31t))

(OoTaEachFn
(COND

((CDR hold)
(CONS (QUOTE Composition)

hold))
(T (CAR hold)))

changed-sit argnames
(Con3N (QUOTE LAMBDA)

(QUOTE W)
moreworlc]

(T (UpdateASUIB slt changedsit argnames
aft ectedsit]

((EQ sit changedsit)
(COND

(hold (lnvalidateinverseFn
(COND

((CDR hold)
(CONJS (QUOTE Composition)

hold))
(T (CAR hold)))

affectedslt changedsit argnames))
(T (invalidateFn at fectedslt changed31t
(T NIL)) argnamesJ

(SETO hold (CONS sIt hold]
(LIST NIL]

Combinei'For (PossebleSIotsOtlTypEx Allsas AllExamples SuperTypExn SubTypExt)
Defn [LAMBDA (slotlist args)

(SETO slotlist ((LAMBDA (**SELF22)
(APPLY' (GetValue (QUOTE Composition)

(QUOTE ToParseParts)
(QUOTE (VERYSAFESLOT VERYSAFEUNIT)))

slotlist]
NIL))

(PROG (walker answer IsLIST)
(SETO walker (REVERSE slotlist))
(SETO answer (GetGetVal (CAR walker)

(QUOTE uNlTcomp)
(QUOTE oTH-ERcomp)))

[SETO IsLIST (LlatFormat (HardFormat (CAR walker]
LOOP(COND

((CDR walker)
(SETO walker (CDR walker))
(SETO answer (ComposeAux (CAR walker)

answer
(QUOTE oTHERcomp)))

(GO LOOP))

(T (RETURN (LIST [LIST (QUOTE LAMBDA)
(QUOTE (uNITcomP sLOTcomp oTHERcomp))
(LIST (QUOTE OR)

(isOk answer)
(CONO

03LsIST (QUOTE NoEntries))
(T (QUOTE NoEntryl

(CONS (COND
(isLIST (QUOTE FSet))
(T (QUOTE FSingleton)))

(COR (RangeTypeOt (CAR 3lotlit]
(DomainTypeOf (CAR (LAST 3iot13t))
(QUOTE PSEUDO-SLOT]

FnForlnvertlng [LAMBDA (hldefn temp)
(AND [EVERY (CDR hidefn)

(FUNCTION (LAMBDA (x pmet)
(AND (SETO pmet (InvertHLD x)

(SETO temp (CONS pmet temp]
(CONS (QUOTE Composition)

temp]
RangeType (F'Singleton SlatType)
GetFnsUsed [LAMBDA (hid sc)

(CONS (CAR hid)
(MapUrnon (CDR hid)

(FUNCTION (LAMBDA (term)
(AND (LISTF term)

(GetAIIFNS term]
Dot nUsedBy (Alisas)
GetCVsUsed [LAMBDA (hid sc)

(OR [MapUnion (COR hid)
(FUNCTION (LAMBDA (term)

(COND
((ATOM term)

(LIST term))
(T (GetAIICVs term)

NoEntries]
AIIlsas (AnySlotLlstFn AnyStorableFn AnyProcess Anything AnyCT&U AnyFunctlcn

AnyUnitListFn AnyFunctional AnySiotCombiner)
Prototypes (TypicalSiotCombiner TypicalSlotListFn TypicalStorableFn

TypicalFunctional TypicaiFunction TypicalProcess TypicaCT&U
TypicalThing)

MySlotsNowOrdered (OrderedPrototypes)
ToPerseParts (LAMBDA (args) (MAPCAR args (FUNCTION HLDetnParserj

641ok
Nothing changed.
Composition

<<<<(21. Examples of SlotComblners >>>>

(There are several exising slot combiners.)
6-(AllExamples 'AnySlotCombiner)
(Subsetting CommonXProd Intersecting FirstOk Starring Application

Composition Tripple OrderedStarring OrderedComposition
Unioning OrderedUnioning Mussing OneOf Soften PutinOrder
Listing DoneIndirectly)

(This class belongs in a subcategory ot two more general classes:)
7..SuperClass(AnySiotCombiner)
(AnySlotLlstFn AnyFunctional)

G-20

(The first contains units which represent functions which each take a
list of slots as Its argument.
It, in turn is a subclass of AnyUnitLitFunction - I.e. functions
which take a list of units as arguments.

The second contains those "functions" which return, as a value,
another function. This category also includes, for example,
logical-operators, which map a list of predicates Into a new predicate,
which returns T, e.g., when each of those predicates would return T.

Appendix C shows these classes In more detail.)

<<<< 22. What else can we say about Father?))))

90-RangeType(Father]

fFSingleton (UnitType (L-AND ('P AnyPerson)
(SlotVal Gender Male]

(Let's see if we're allowed to say "HisMother" is someone's Father)
91-(PutValue 'Visitor 'Father 'HisMother)
NIL

((((< 23. Far too quiet:)))

Isn't that annoying? It would especially even more so it we didn't know
why this function failed.
(Here, It's because Father must be Male, and "HisMother" isn't.]
Let's make it noisier -- in fact, let's create a whole new class of slots,
which are more Informative.
To see how it will work, let us first see how PutValue really works:

<<< 24. How do accessing functions really work? >>>>

98.-PP(PutValue]
loading from <CSO.RLL)UTIL..7

(PutValue
(LAMBOA (uNIT sLOT Val old why) "COMMENT"s "COMMENT" "'COMMENTI"

(APPLY" (GetAccessFn sLOT (QUOTE ToPutValue)
(QUOTE (VERYSAFESLOT))
(QUOTE UA-OELSLOT))

uNIT sLOT Val old why])
(PutValue)

(So you see, it basically Just goes to the slot, and asks It how
put a value.
It applies the result of that GetAccessFn call on its list of arguments)

96,-PP(GetAccessFn]
loading from <CSD.RLL)RLL..6

(GetAccessFn
[LAMBDA (sLOT thisslot oTHER dftfn) "COMMENT" "COMMENT"

(OR (MEMB (QUOTE IMPURE)
oTHER)

(SETO uContext sLOT))
(SET (COND

((MEMO (QUOTE IMPURE)
oTHER)

(QUOTE uValue))
(T (QUOTE oTHER)))

(OR (sOk (UA-GETVALUE sLOT thi3slo))G
2

(030k (Find~efault sLOT thissiot OTHER))
(Check~efn (Warning (CONCAT "Unable to find the thi33lOt

" $lot of
dftfn sLOT 0. Perhaps it is not a unitu)))

(QUOTE NoOp])
(GetAccessFn)))

(Essentially this sees if there is a value stared on sLOT:thisslot
It so, It Uses that value. Otherwise, it calls FindDefault, which)

<<<< 25. The FlndiDe fault functions >))

97-PP(FindOef suit)
loading from <CSO.RLL)RLL..(3

(Find~efault
[LAMBDA (uUNIT uSLOT oTHERs) '1COMMENT'12

(AND (Slotp uSLOT)
(MapUntilOk [GetValue uUNiT (QUOTE OrderedPrototypes)

(AddOnCharacter oTHERs
(QUOTE (VERYSAFESLOT SAFE

FAST-GET
FAST-CACHE]

(FUNCTION (LAMBDA (x)
(FindValue (UA-GETVALUE x uSLOT)

x uSLOT oTHERs)
(Find~efault)

(This scans through the unit's OrderedPrototypes,
returning the first value, V, which Is nonNIL.)

g8.'(Find~e fault 'Father 'ToPutValue]
Def auitPutValue

(Note this is the value stored on TypicalSlot:ToPutValue)

1 OO-EDITU(TypicaiSlot]
edit
4QRf ToPutValue
411p

.ToPtitValue OefauitPutValue
AfterPutValue OefaultAfterPutValue
BeforePutValue Detault~eforePutValue
BeforeGetVatue Default~eforeGetValue
AfterGetVaiue DefaultAfterGetValue
ToAddValue DetauitAddVaiue
ToDeleteValue Default~eleteValue
ToKillValue DefaultKiliValue
ToSubstValue DefaultSubstValue..

(Note also BetorePutValue and AtterPutValue's values)

452ok
Nothing changed.
TypicalSlot

<<< 2.Sraey >,

G-22

What we must do Is Intercept this Find~efault.
First, we will write the function which actually prints the desired message.
Then create a whole new class Of types of slots, which will, by default,
Use this chattier put value.

(<<< 27. What gets done when? - system dependent fns; >>>>

(First, rewrite the appropriate function, to report Type Errors
Need to see what OefaultPutValue does:)

3.PP(DefaultPutValuej
loading from (CSD.RLL>RLL..6

(Deo uitPutValue
[LAMBDA (uNIT sLOT newValue oidValue why sltputter) *aCOMMENT"S

((OR why (SETO why (LIST (QUOTE UserCommand]
(OR oldValue (SETO oidValue (UA-GETVALUE uNIT sLOT))))

(AND (OR (MEMO (QUOTE Fast-Put) why)
(APPLY* (GetAccessFn sLOT (QUOTE BeforePutValue))

uNiT sLOT oldVaiue (CONS (QUOTE NewVal) newValue)
why))

(150k (SETO 3itputter (GetValue (GetValue sLOT (QUOTE Format)
(QUOTE (VERYSAFESLOT SAFE)))

(QUOTE FnForPutting)
(QUOTE (VERYSAFE SLOT SAFE]

(SETO newValue (COND
((MustComputep newValue)

(UA-OELSLOT uNIT sLOT)
RecomputeMe)

((orma ttedValuep oidVaiue)
(APPLY' (GetValue (ValueFormat oidValue)

(QUOTE FnForPutting)
(QUOTE (VE RYSAFE SLOT)))

uNIT sLOT newValue aidValue why sltputter))
((Forma ttedValuep newValue)

(APPLY* (GetValue (ValueFormat newValue)
(QUOTE FnForPutting)
(Q2UOTE (VERY SAFESLOT)))

uNIT sLOT newValue oldValue why sItputter))
(T (APPLY' sltputter uNIT sLOT newValue oldValue why]

(OR (MEMB (QUOTE Fast-Put)
why)

(APPLY' (GetAccessFn sLOT (QUOTE AfterPutValue))
uNIT sLOT newValue (CONS (QUOTE OldVal)

oidValue)
why))

newValue))
(DefouitPutValue)

(In effect, this first calls (GetAccessSlot slot 'BeforePutValue)
on the arguments.
It that returns nonNIL, it does the put,
and finally (if that also returned nonNIL)
calls (GetAccessSlot slot 'AfterPutValue) on the arguments.)

4..GetAccesSSot(Father BeforePutValue)
Doftault~ef orePutValue

(Recall this appears on TypicalSlot, way above.)

5-Find~etault(Father AfterPutValuej
DetauitAfterPutVaiue

(ditto)

6-PP(DefaultBe forePutValue]
loading from (CSO.RLL>ALL..5

(Del auitBeforePutValue
[(LAMBDA (un sI ald modif why) "~COMMENT"

(COND
((OR (MEMS (QUOTE UserCommand)

why)
(MEMB (QUOTE UserEdits)

why)
(AND (MEMB (QUOTE New-Unit)

why)
(NOT (EQUAL (COR modit)

old]
(DetautVerifyValue uf l olad modit why))

(T modif])))
(Del ault~ef orePutValue)

(Aha - DefauitVerifyValue looks like the function which atteMPt3 to Verify
that a value is reasonable.
(Note it only does this if this is a User edit,
as it trusts its own puts ...))

7-(DefaultVerifyValue 'Visitor 'Father NIL '(NewVal .Her~usband]
T

8-kDefaultVerifyValue 'Visitor 'Father NIL '(NewVal . HisMother)
NIL

(Yep, that's the piace. So)

<'<<< 28. Creating a new function))

g..MOVD(Oe tauitBe forePutValue Chatty6PV T]

loading from <CSO.RLL>RLL..6
Please enter the Knowledge Base in which to store ChattyBPV: GENLINFO
wChattyBpV defined using Interpreted Code for Default~eforePutValue"

((Note I've advised MOVO to be smart - copying the source code rather
than the compiled code;
and asking where to store this new function.

.V (This is a simple database management facility.]
I told it to store this function in the list associated
with the GENLINFO kb.)

1 O-EDITF(ChattyBPV)
edit
520-1 2 p
((OR & & &) (DefaultVerityValue Un 31 oid modif why))
530-1 p
(DefaultVerifyValue un 31 old modlt why)

G-24

53'mbd (OR I(PFIOGN (WRITELNTTY "Unable to put" (CDR modif) "onto" un
11:11 sI " because of a type error'!!") NIL]

55a1pp

(OR (OefaultVerityValue un sI old modif why)
(PROGN (WRITELNTTY "Unable to put" &onto "un 0:0 sl

"because of a type error!!"))
68'1ok

ChattyBPV

<<<< 29. New class of types of slots - ChattySlots >>>>

(First, let me show you NewSubClass:)

93 -PP(NewSubC lass)
loading from (CSD.RLL>UTIL..7

(NewSubClass
[LAMBDA (UNAM UOLD whicJhXB) *'COMMENT'2 '"COMMENT"'2

(NewUnit UNAM UOID (QUOTE lSubC1,ass)
whichK))

(NewSubClass)

(Recall "lSubClass"l was an inheritance' unit we saw long ago.)

94-NewSubClass)
Name: AnyChattySlot
Is a lSubClass of: AnySlot
Please enter the Knowledge Base in which to store AnyChattySlot- GENLINFO

'Initialized AnyChattySlot'
edit
39"P
(Isa (AnyClassOtObjects)
Ailsas (AnyCT&U Anything AnyClassOfObjects)
Prototypes (TypicalClass TypicaCT&U TypicalThing)
MySiotsNow~rdered (OrderedPrototypes)
MyCreatedAs (lSubClass &)
MyTlmeOf Creation "18-Aug-80 1 7:03:13"
MyCreator "NewUser"
TotalSoFar 0
SuperClass (AnySlot)
MySensibleSiots (Descr Characteristics Prototypes AllSpecs AliGenls AlIIsas

isa OrderedPrototypes Specializations MySlots MyCreatedAs
MySensibleSlots MySiotsNow~rdered MyEssentiaiVirtualSlots
MyToRenameMe MyToKilIMe MyTime~f Creation MyCreator TotalSoFar -)

392ok
Verifying slots
AnyChattySlot

(To make every example of AnyChattySlot print more instructive messages,
(instead of just returning NIL,
we have to Intercept FIndDefault's search for BeforePutValue.
This will happen If there is a TyplcalChattySlot, which has A
BeforePutValue value stored.

So now to create that unit:)

G-25

<<<30. Create a new tyPical memrber of AnyC hatySlol ?)

(Now to create the TypicalChattySlot unit, and Use this new
ChattyflPV function for its BelorePutValue value)

2-NewTyPEx(TyPscalChattyS~ot AnyChattySct GENOWNFO
2Initialized TypicalCha tty Slot

edit
401p
(13a (AnyArchetype)
TyplcalExampleOf AriyChattySlot
NewPossible Slots NoEntries

411 (n eforePutValue ChattyBPV]

421ok
Verifying slots
TypicaiChattySlot

{Ncw all examples of AnyChattySot will report such errors. Pf:
First, the unaltered Husband.)

11 -(GetValue 'Husband 'Prototypes'
(TypicaiVirtua iSlot rypicaiUnitFn TvpicalS torableFn TypicalProcess TypicaiThing

Typica[CT&U TypicalFunction TypicalSlot)

(Note Husband's Prototypes, of course, omits rypicalChattyS~ot)

12-(PutValue 'Vlsitcr 'Husoand 'HisMother)
NIL

(Now move Husband over)

1 3-(PutValue 'Husband 'isa '(AyChattySiotl
(AnyChattySiot)

(Husband's Prototypes have been rewritten)

1 4-(GetValue 'Husband 'Prototypes]
(TypicaiCha tty Slot TypicalUnitFn TypicalStorableFn TypicalProcess TypicalThing

TypicalCT&U TypicalFunction TypicalSlot)
1 5..redo 11
Unable to put HisMother onto Vlsitor:Husband because of a type error!
NIL

(Ta daaa')

1 6-Examoies(AnyChattySlot]

(Husband)

<<'<< 3 1.Conclusion >>>>
(That's about all for now.)

28-SYSOUT(DEMO]
(3SCRATCH>iOEMO.EXE. 1

2g..LOGOUT]

G-26

it is now 18-Aug-80 1 7:37:40.
Closing DribbleFile <CSO.IA>TRACE.AUG18.1

G;Now in the monitor.

